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SECTION 12.2 VECTORS 799

8. If the vectors in the figure satisfy and
, what is ?

9–14 Find a vector with representation given by the directed line
segment AB

l
. Draw AB

l
and the equivalent representation starting at

the origin.

9. , 10. ,

11. , 12. ,

13. , 14. ,

15–18 Find the sum of the given vectors and illustrate 
geometrically.

15. , 16. ,

17. , 18. ,

19–22 Find a � b, 2a � 3b, , and .

19. ,

20. ,

21. ,

22. ,

23–25 Find a unit vector that has the same direction as the given
vector.

23. 24.

25.

26. Find a vector that has the same direction as but has
length 6.

27–28 What is the angle between the given vector and the positive
direction of the -axis?

27. 28.

29. If lies in the first quadrant and makes an angle with the
positive -axis and , find in component form.

30. If a child pulls a sled through the snow on a level path with a
force of 50 N exerted at an angle of above the horizontal,
find the horizontal and vertical components of the force.

31. A quarterback throws a football with angle of elevation and
speed . Find the horizontal and vertical components of
the velocity vector.

�u � � �v � � 1
u � v � w � 0 �w �

u

v

w

a

A��1, 1� B�3, 2� A��4, �1� B�1, 2�

B�0, 6�A�2, 1�B�2, 2�A��1, 3�

B�4, 2, 1�A�4, 0, �2�B�2, 3, �1�A�0, 3, 1�

��1, 5 ��3, �1 ��6, �2 ���1, 4 �

�0, 0, 6 ��1, 3, �2 ��0, 8, 0 ��3, 0, 1 �

� a � b �� a �
b � ��3, �6 �a � �5, �12 �

b � i � 2 ja � 4 i � j

b � �2 i � j � 5ka � i � 2 j � 3k

b � 2 j � ka � 2 i � 4 j � 4 k

��4, 2, 4 ��3 i � 7 j

8 i � j � 4k

��2, 4, 2 �

x

i � s3 j 8 i � 6 j

��3v
v� v � � 4x

38�

40�
60 ft�s

32–33 Find the magnitude of the resultant force and the angle it
makes with the positive -axis.

32. 33.

34. The magnitude of a velocity vector is called speed. Suppose
that a wind is blowing from the direction N W at a speed of
50 km�h. (This means that the direction from which the wind
blows is west of the northerly direction.) A pilot is steering
a plane in the direction N E at an airspeed (speed in still air)
of 250 km�h. The true course, or track, of the plane is the
direction of the resul tant of the velocity vectors of the plane
and the wind. The ground speed of the plane is the magnitude
of the resultant. Find the true course and the ground speed of
the plane.

35. A woman walks due west on the deck of a ship at 3 mi�h. The
ship is moving north at a speed of 22 mi�h. Find the speed and
direction of the woman relative to the surface of the water.

36. Ropes 3 m and 5 m in length are fastened to a holiday decora-
tion that is suspended over a town square. The decoration has 
a mass of 5 kg. The ropes, fastened at different heights, make
angles of and with the horizontal. Find the tension in
each wire and the magnitude of each tension.

37. A clothesline is tied between two poles, 8 m apart. The line 
is quite taut and has negligible sag. When a wet shirt with a
mass of 0.8 kg is hung at the middle of the line, the mid point 
is pulled down 8 cm. Find the tension in each half of the
clothesline.

38. The tension T at each end of the chain has magnitude 25 N
(see the figure). What is the weight of the chain?

39. A boatman wants to cross a canal that is 3 km wide and wants
to land at a point 2 km upstream from his starting point. The
current in the canal flows at and the speed of his boat
is .
(a) In what direction should he steer?
(b) How long will the trip take?

x

20 lb

16 lb

45°
0

y

x30°
300 N

200 N

60°
0

y

x

45�

45�
60�

52� 40�

3 m 5 m

52°
40°

37° 37°

3.5 km�h
13 km�h
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SECTION 12.2 VECTORS ¤ 245

20. a+ b = (4 i+ j) + (i 2 j) = 5 i j

2a+ 3b = 2 (4 i+ j) + 3 (i 2 j) = 8 i+ 2 j+ 3 i 6 j = 11 i 4 j

|a| = 42 + 12 = 17

|a b| = |(4 i+ j) (i 2 j)| = |3 i+ 3 j| = 32 + 32 = 18 = 3 2

21. a+ b = (i+ 2 j 3k) + ( 2 i j+ 5k) = i+ j+ 2k

2a+ 3b = 2 (i+ 2 j 3k) + 3 ( 2 i j+ 5k) = 2 i+ 4 j 6k 6 i 3 j+ 15k = 4 i+ j+ 9k

|a| = 12 + 22 + ( 3)2 = 14

|a b| = |(i+ 2 j 3k) ( 2 i j+ 5k)| = |3 i+ 3 j 8k| = 32 + 32 + ( 8)2 = 82

22. a+ b = (2 i 4 j+ 4k) + (2 j k) = 2 i 2 j+ 3k

2a+ 3b = 2 (2 i 4 j+ 4k) + 3 (2 j k) = 4 i 8 j+ 8k+ 6 j 3k = 4 i 2 j+ 5k

|a| = 22 + ( 4)2 + 42 = 36 = 6

|a b| = |(2 i 4 j+ 4k) (2 j k)| = |2 i 6 j+ 5k| = 22 + ( 6)2 + 52 = 65

23. The vector 3 i+ 7 j has length | 3 i+ 7 j| = ( 3)2 + 72 = 58, so by Equation 4 the unit vector with the same

direction is 1

58
( 3 i+ 7 j) =

3

58
i+

7

58
j.

24. |h 4 2 4i| = ( 4)2 + 22 + 42 = 36 = 6, so u = 1
6
h 4 2 4i = 2

3
1
3

2
3
.

25. The vector 8 i j+ 4k has length |8 i j+ 4k| = 82 + ( 1)2 + 42 = 81 = 9, so by Equation 4 the unit vector with

the same direction is 1
9
(8 i j+ 4k) = 8

9
i 1

9
j+ 4

9
k.

26. |h 2 4 2i| = ( 2)2 + 42 + 22 = 24 = 2 6, so a unit vector in the direction of h 2 4 2i is u = 1

2 6
h 2 4 2i.

A vector in the same direction but with length 6 is 6u = 6 · 1

2 6
h 2 4 2i = 6

6

12

6

6

6
or 6 2 6 6 .

27. From the figure, we see that tan =
3

1
= 3 = 60 .
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246 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

28. From the figure we see that tan = 6
8
= 3

4
, so = tan 1 3

4
36 9 .

29. From the figure, we see that the -component of v is

1 = |v| cos( 3) = 4 · 1
2
= 2 and the -component is

2 = |v| sin( 3) = 4 · 3
2
= 2 3 Thus

v = h 1 2i = 2 2 3 .

30. From the figure, we see that the horizontal component of the

force F is |F| cos 38 = 50 cos 38 39 4 N, and the

vertical component is |F| sin 38 = 50 sin 38 30 8 N.

31. The velocity vector v makes an angle of 40 with the horizontal and

has magnitude equal to the speed at which the football was thrown.

From the figure, we see that the horizontal component of v is

|v| cos 40 = 60 cos 40 45 96 ft/s and the vertical component

is |v| sin 40 = 60 sin 40 38 57 ft/s.

32. The given force vectors can be expressed in terms of their horizontal and vertical components as

20 cos 45 i+ 20 sin 45 j = 10 2 i+ 10 2 j and 16 cos 30 i 16 sin 30 j = 8 3 i 8 j. The resultant force F

is the sum of these two vectors: F = 10 2 + 8 3 i+ 10 2 8 j 28 00 i+ 6 14 j. Then we have

|F| (28 00)2 + (6 14)2 28 7 lb and, letting be the angle F makes with the positive -axis,

tan =
10 2 8

10 2 + 8 3
= tan 1 10 2 8

10 2 + 8 3
12 4 .

33. The given force vectors can be expressed in terms of their horizontal and vertical components as 300 i and

200 cos 60 i+ 200 sin 60 j = 200 1
2
i+ 200 3

2
j = 100 i+ 100 3 j. The resultant force F is the sum of

these two vectors: F = ( 300 + 100) i+ 0 + 100 3 j = 200 i+ 100 3 j. Then we have

|F| ( 200)2 + 100 3
2
= 70,000 = 100 7 264 6 N. Let be the angle F makes with the
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824 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

1. Determine whether each statement is true or false.
(a) Two lines parallel to a third line are parallel.
(b) Two lines perpendicular to a third line are parallel.
(c) Two planes parallel to a third plane are parallel.
(d) Two planes perpendicular to a third plane are parallel.
(e) Two lines parallel to a plane are parallel.
(f ) Two lines perpendicular to a plane are parallel.
(g) Two planes parallel to a line are parallel.
(h) Two planes perpendicular to a line are parallel.
( i) Two planes either intersect or are parallel.
( j) Two lines either intersect or are parallel.
(k) A plane and a line either intersect or are parallel.

2–5 Find a vector equation and parametric equations for the line.

2. The line through the point and parallel to the 
vector

3. The line through the point and parallel to the 
vector

4. The line through the point and parallel to the line
, , 

5. The line through the point (1, 0, 6) and perpendicular to the
plane

6–12 Find parametric equations and symmetric equations for the
line.

6. The line through the origin and the point 

7. The line through the points and 

8. The line through the points and

9. The line through the points and 

10. The line through and perpendicular to both 
and

11. The line through and parallel to the line

12. The line of intersection of the planes 
and

13. Is the line through and parallel to the
line through and ?

14. Is the line through and perpendicular to the
line through and ?

15. (a) Find symmetric equations for the line that passes 
through the point and is parallel to the vector

.
(b) Find the points in which the required line in part (a) inter-

sects the coordinate planes.

�6, �5, 2�
�1, 3, �2

3 �
�2, 2.4, 3.5�

3 i � 2 j � k

�0, 14, �10�
z � 3 � 9ty � 6 � 3tx � �1 � 2t

x � 3y � z � 5

�4, 3, �1�

�2, 1, �3�(0, 1
2, 1)

�1.0, 2.4, 4.6� �2.6, 1.2, 0.3�

��8, 1, 4� �3, �2, 4�

i � j�2, 1, 0�
j � k

�1, �1, 1�
x � 2 � 1

2 y � z � 3

x � 2y � 3z � 1
x � y � z � 1

��2, 0, �3���4, �6, 1�
�5, 3, 14��10, 18, 4�

�1, 1, 1���2, 4, 0�
�3, �1, �8��2, 3, 4�

�1, �5, 6�
��1, 2, �3 �

16. (a) Find parametric equations for the line through that
is perpendicular to the plane .

(b) In what points does this line intersect the coordinate
planes?

17. Find a vector equation for the line segment from 
to .

18. Find parametric equations for the line segment from
to .

19–22 Determine whether the lines and are parallel, skew, or
intersecting. If they intersect, find the point of intersection.

19. : ,  ,  

: ,  ,  

20. : ,  ,  

: ,  ,  

21. :

:

22. :

:

23–40 Find an equation of the plane.

23. The plane through the origin and perpendicular to the 
vector

24. The plane through the point and with normal 
vector

25. The plane through the point and with normal 
vector

26. The plane through the point and perpendicular to the
line , , 

27. The plane through the point and parallel to the
plane

28. The plane through the point and parallel to the plane

29. The plane through the point and parallel to the plane

30. The plane that contains the line , ,
and is parallel to the plane 

31. The plane through the points , , and 

32. The plane through the origin and the points 
and

�2, �1, 4�
�4, 6, 1�

�10, 3, 1�
�5, 6, �3�

�2, 4, 6�
x � y � 3z � 7

L1 L2

L1 x � 3 � 2t y � 4 � t z � 1 � 3t

L2 x � 1 � 4s y � 3 � 2s z � 4 � 5s

L1 x � 5 � 12t y � 3 � 9t

L2 x � 3 � 8s y � �6s z � 7 � 2s

L1
x � 2

1
�

y � 3

�2
�

z � 1

�3

L2
x � 3

1
�

y � 4

3
�

z � 2

�7

L1
x

1
�

y � 1

�1
�

z � 2

3

L2
x � 2

2
�

y � 3

�2
�

z

7

�1, �2, 5 �

�5, 3, 5�
2 i � j � k

(�1, 1
2, 3)

i � 4 j � k

�2, 0, 1�
x � 3t y � 2 � t z � 3 � 4t

�1, �1, �1�
5x � y � z � 6

�2, 4, 6�
z � x � y

(1, 1
2, 1

3)
x � y � z � 0

x � 1 � t y � 2 � t
z � 4 � 3t 5x � 2y � z � 1

�0, 1, 1� �1, 0, 1� �1, 1, 0�

�2, �4, 6�
�5, 1, 3�

z � 1 � 3t

12.5 Exercises

1. Homework Hints available at stewartcalculus.com
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SECTION 12.5 EQUATIONS OF L INES AND PLANES 825

33. The plane through the points , , and

34. The plane that passes through the point and contains
the line , , 

35. The plane that passes through the point and contains
the line , , 

36. The plane that passes through the point and 
contains the line with symmetric equations 

37. The plane that passes through the point and contains
the line of intersection of the planes and

38. The plane that passes through the points and
and is perpendicular to the plane 

39. The plane that passes through the point and is perpen-
dicular to the planes and

40. The plane that passes through the line of intersection of the
planes and and is perpendicular to the
plane

41–44 Use intercepts to help sketch the plane.
41. 42.

43. 44.

45–47 Find the point at which the line intersects the given plane.
45. , , ;

46. , , ;  

47. ;

48. Where does the line through and intersect
the plane ?

49. Find direction numbers for the line of intersection of the planes
and .

50. Find the cosine of the angle between the planes
and .

51–56 Determine whether the planes are parallel, perpendicular, or
neither. If neither, find the angle between them.
51. ,

52. ,

53. ,

54. ,

55. ,

56. ,

�3, �1, 2� �8, 2, 4�
��1, �2, �3�

�1, 2, 3�
x � 3t y � 1 � t z � 2 � t

�6, 0, �2�
z � 7 � 4 ty � 3 � 5tx � 4 � 2t

�1, �1, 1�
x � 2y � 3z

��1, 2, 1�
x � y � z � 2

2x � y � 3z � 1

�0, �2, 5�
2z � 5x � 4y��1, 3, 1�

�1, 5, 1�
x � 3z � 42x � y � 2z � 2

y � 2z � 3x � z � 1
x � y � 2z � 1

3x � y � 2z � 62x � 5y � z � 10

6x � 5y � 3z � 156x � 3y � 4z � 6

x � y � 2z � 9z � 5ty � 2 � tx � 3 � t

x � 2y � z � 1 � 0z � 2 � 3ty � 4tx � 1 � 2t

4x � y � 3z � 8x � y � 1 � 2z

�4, �2, 2��1, 0, 1�
x � y � z � 6

x � z � 0x � y � z � 1

x � y � z � 0
x � 2y � 3z � 1

�3x � 6y � 7z � 0x � 4y � 3z � 1

3x � 12y � 6z � 12z � 4y � x

x � y � z � 1x � y � z � 1

x � 6y � 4z � 32x � 3y � 4z � 5

8y � 1 � 2x � 4zx � 4y � 2z

2x � y � 2z � 1x � 2y � 2z � 1

57–58 (a) Find parametric equations for the line of intersection of
the planes and (b) find the angle between the planes.
57. ,

58. ,

59–60 Find symmetric equations for the line of intersection of the
planes.
59. ,

60. ,

61. Find an equation for the plane consisting of all points that are
equidistant from the points and .

62. Find an equation for the plane consisting of all points that are
equidistant from the points and .

63. Find an equation of the plane with -intercept , -intercept ,
and -intercept .

64. (a) Find the point at which the given lines intersect:

(b) Find an equation of the plane that contains these lines.

65. Find parametric equations for the line through the point
that is parallel to the plane and

perpendicular to the line , , .

66. Find parametric equations for the line through the point
that is perpendicular to the line , 

, and intersects this line.

67. Which of the following four planes are parallel? Are any of
them identical?

68. Which of the following four lines are parallel? Are any of them
identical?

,  ,  
,  ,  

69–70 Use the formula in Exercise 45 in Section 12.4 to find the 
distance from the point to the given line.
69. ;  , , 

70. ;  , , 

3x � 2y � z � 1 2x � y � 3z � 3

5x � 2y � 2z � 1 4x � y � z � 6

z � 2x � y � 5 z � 4x � 3y � 5

�1, 0, �2� �3, 4, 0�

�2, 5, 5� ��6, 3, 1�

x a y b
z c

r � �1, 1, 0 � � t �1, �1, 2 �

r � �2, 0, 2 � � s ��1, 1, 0 �

�0, 1, 2� x � y � z � 2
x � 1 � t y � 1 � t z � 2t

�0, 1, 2� x � 1 � t
y � 1 � t z � 2t

P1:  3x � 6y � 3z � 6 P2: 4x � 12y � 8z � 5
P3: 9y � 1 � 3x � 6z P4: z � x � 2y � 2

L1: x � 1 � 6t y � 1 � 3t z � 12t � 5
L2: x � 1 � 2t y � t z � 1 � 4t
L3: 2x � 2 � 4 � 4y � z � 1
L4: r � �3, 1, 5 � � t �4, 2, 8 �

�4, 1, �2� x � 1 � t y � 3 � 2t z � 4 � 3t

�0, 1, 3� x � 2t y � 6 � 2t z � 3 � t

x � 2y � 2z � 1x � y � z � 1
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826 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

71–72 Find the distance from the point to the given plane.
71. ,

72. ,

73–74 Find the distance between the given parallel planes.
73. ,

74. ,

75. Show that the distance between the parallel planes
and is

76. Find equations of the planes that are parallel to the plane
and two units away from it.

77. Show that the lines with symmetric equations and
are skew, and find the distance between

these lines.

2x � 3y � z � 4 4x � 6y � 2z � 3

6z � 4y � 2x 9z � 1 � 3x � 6y

ax � by � cz � d1 � 0 ax � by � cz � d2 � 0

D � � d1 � d2 �
sa 2 � b 2 � c 2

x � 2y � 2z � 1
x � y � z

x � 1 � y�2 � z�3

3x � 2y � 6z � 5�1, �2, 4�

x � 2y � 4z � 8��6, 3, 5�

78. Find the distance between the skew lines with parametric 
equations , , , and ,

, .
79. Let be the line through the origin and the point .

Let be the line through the points and .
Find the distance between and .

80. Let be the line through the points and . 
Let be the line of intersection of the planes and , 
where is the plane and is the plane
through the points , , and . Calculate
the distance between and .

81. If , , and are not all 0, show that the equation
represents a plane and is 

a normal vector to the plane.
Hint: Suppose and rewrite the equation in the form

82. Give a geometric description of each family of planes.
(a) (b)
(c)

L1 �2, 0, �1�
L2 �1, �1, 1� �4, 1, 3�

L1 L2

L1 �1, 2, 6� �2, 4, 8�
L2 �1 �2

�1 x � y � 2z � 1 � 0 �2

�3, 2, �1� �0, 0, 1� �1, 2, 1�
L1 L2

a b c
ax � by � cz � d � 0 �a, b, c �

a � 0

a�x �
d
a	 � b�y � 0� � c�z � 0� � 0

x � y � z � c x � y � cz � 1
y cos � � z sin � � 1

x � 1 � 2sz � 2ty � 1 � 6tx � 1 � t
z � �2 � 6sy � 5 � 15s

L A B O R AT O R Y  P R O J E C T PUTTING 3D IN PERSPECTIVE

Computer graphics programmers face the same challenge as the great painters of the past: how 
to represent a three-dimensional scene as a flat image on a two-dimensional plane (a screen or a
canvas). To create the illusion of perspective, in which closer objects appear larger than those
farther away, three-dimensional objects in the computer’s memory are projected onto a rect-
angular screen window from a viewpoint where the eye, or camera, is located. The viewing
volume––the portion of space that will be visible––is the region contained by the four planes that
pass through the viewpoint and an edge of the screen window. If objects in the scene extend
beyond these four planes, they must be truncated before pixel data are sent to the screen. These
planes are therefore called clipping planes.

1. Suppose the screen is represented by a rectangle in the -plane with vertices
and , and the camera is placed at . A line in the scene passes
through the points and . At what points should be clipped
by the clipping planes?

2. If the clipped line segment is projected on the screen window, identify the resulting line
segment.

3. Use parametric equations to plot the edges of the screen window, the clipped line segment,
and its projection on the screen window. Then add sight lines connecting the viewpoint to
each end of the clipped segments to verify that the projection is correct.

4. A rectangle with vertices , , , and
is added to the scene. The line intersects this rectangle. To make the rect-

angle appear opaque, a programmer can use hidden line rendering, which removes portions
of objects that are behind other objects. Identify the portion of that should be removed.

yz �0, �400, 0�
�0, �400, 600� �1000, 0, 0� L

�230, �285, 102� �860, 105, 264� L

�621, �147, 206� �563, 31, 242� �657, �111, 86�
�599, 67, 122� L

L
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 273

12.5 Equations of Lines and Planes

1. (a) True; each of the rst two lines has a direction vector parallel to the direction vector of the third line, so these vectors are

each scalar multiples of the third direction vector. Then the rst two direction vectors are also scalar multiples of each

other, so these vectors, and hence the two lines, are parallel.

(b) False; for example, the - and -axes are both perpendicular to the -axis, yet the - and -axes are not parallel.

(c) True; each of the rst two planes has a normal vector parallel to the normal vector of the third plane, so these two normal

vectors are parallel to each other and the planes are parallel.

(d) False; for example, the - and -planes are not parallel, yet they are both perpendicular to the -plane.

(e) False; the - and -axes are not parallel, yet they are both parallel to the plane = 1.

(f ) True; if each line is perpendicular to a plane, then the lines’ direction vectors are both parallel to a normal vector for the

plane. Thus, the direction vectors are parallel to each other and the lines are parallel.

(g) False; the planes = 1 and = 1 are not parallel, yet they are both parallel to the -axis.

(h) True; if each plane is perpendicular to a line, then any normal vector for each plane is parallel to a direction vector for the

line. Thus, the normal vectors are parallel to each other and the planes are parallel.

(i) True; see Figure 9 and the accompanying discussion.

( j) False; they can be skew, as in Example 3.

(k) True. Consider any normal vector for the plane and any direction vector for the line. If the normal vector is perpendicular

to the direction vector, the line and plane are parallel. Otherwise, the vectors meet at an angle , 0 90 , and the

line will intersect the plane at an angle 90 .

2. For this line, we have r0 = 6 i 5 j+ 2k and v = i + 3 j 2
3
k, so a vector equation is

r = r0 + v = (6 i 5 j+ 2k) + i+ 3 j 2
3
k = (6 + ) i+ ( 5 + 3 ) j+ 2 2

3
k and parametric equations are

= 6 + , = 5 + 3 , = 2 2
3 .

3. For this line, we have r0 = 2 i+ 2 4 j + 3 5k and v = 3 i+ 2 j k, so a vector equation is

r = r0 + v = (2 i+2 4 j+3 5k) + (3 i+2 j k) = (2+ 3 ) i+ (2 4+ 2 ) j+ (3 5 )k and parametric equations are

= 2 + 3 , = 2 4 + 2 , = 3 5 .

4. This line has the same direction as the given line, v = 2 i 3 j+ 9k. Here r0 = 14 j 10k, so a vector equation is

r = (14 j 10k) + (2 i 3 j+ 9k) = 2 i+ (14 3 ) j+ ( 10 + 9 )k and parametric equations are = 2 ,

= 14 3 , = 10 + 9 .

5. A line perpendicular to the given plane has the same direction as a normal vector to the plane, such as

n = h1 3 1i. So r0 = i + 6k, and we can take v = i + 3 j + k. Then a vector equation is
r = (i+ 6k) + (i+ 3 j+ k) = (1 + ) i+ 3 j+ (6 + )k, and parametric equations are = 1 + , = 3 , = 6 + .
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274 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

6. The vector v = h4 0 3 0 1 0i = h4 3 1i is parallel to the line. Letting 0 = (0 0 0), parametric equations are

= 0 + 4 · = 4 , = 0 + 3 · = 3 , = 0 + ( 1) · = , while symmetric equations are
4
=
3
=

1
or

4
=
3
= .

7. The vector v = 2 0 1 1
2

3 1 = 2 1
2

4 is parallel to the line. Letting 0 = (2 1 3), parametric equations

are = 2 + 2 , = 1 + 1
2
, = 3 4 , while symmetric equations are 2

2
=

1

1 2
=

+ 3

4
or

2

2
= 2 2 =

+ 3

4
.

8. v = h2 6 1 0 1 2 2 4 0 3 4 6i = h1 6 1 2 4 3i, and letting 0 = (1 0 2 4 4 6), parametric equations are

= 1 0 + 1 6 , = 2 4 1 2 , = 4 6 4 3 , while symmetric equations are 1 0

1 6
=

2 4

1 2
=

4 6

4 3
.

9. v = h3 ( 8) 2 1 4 4i = h11 3 0i, and letting 0 = ( 8 1 4), parametric equations are = 8 + 11 ,

= 1 3 , = 4 + 0 = 4, while symmetric equations are + 8

11
=

1

3
, = 4. Notice here that the direction number

= 0, so rather than writing 4

0
in the symmetric equation we must write the equation = 4 separately.

10. v = (i+ j)× ( j+ k) =
i j k

1 1 0

0 1 1

= i j+ k is the direction of the line perpendicular to both i+ j and j+ k.

With 0 = (2 1 0), parametric equations are = 2 + , = 1 , = and symmetric equations are 2 =
1

1
=

or 2 = 1 = .

11. The line has direction v = h1 2 1i. Letting 0 = (1 1 1), parametric equations are = 1 + , = 1 + 2 , = 1 +

and symmetric equations are 1 =
+ 1

2
= 1.

12. Setting = 0 we see that (1 0 0) satis es the equations of both planes, so they do in fact have a line of intersection.

The line is perpendicular to the normal vectors of both planes, so a direction vector for the line is

v = n1 × n2 = h1 2 3i × h1 1 1i = h5 2 3i. Taking the point (1 0 0) as 0, parametric equations are = 1 + 5 ,

= 2 , = 3 , and symmetric equations are 1

5
=
2
=

3
.

13. Direction vectors of the lines are v1 = h 2 ( 4) 0 ( 6) 3 1i = h2 6 4i and

v2 = h5 10 3 18 14 4i = h 5 15 10i, and since v2 = 5
2
v1, the direction vectors and thus the lines are parallel.

14. Direction vectors of the lines are v1 = h3 3 1i and v2 = h1 4 12i. Since v1 · v2 = 3 + 12 12 6= 0, the vectors and
thus the lines are not perpendicular.
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 275

15. (a) The line passes through the point (1 5 6) and a direction vector for the line is h 1 2 3i, so symmetric equations for

the line are 1

1
=

+ 5

2
=

6

3
.

(b) The line intersects the -plane when = 0, so we need 1

1
=

+ 5

2
=
0 6

3
or 1

1
= 2 = 1,

+ 5

2
= 2 = 1. Thus the point of intersection with the -plane is ( 1 1 0). Similarly for the -plane,

we need = 0 1 =
+ 5

2
=

6

3
= 3, = 3. Thus the line intersects the -plane at (0 3 3). For

the -plane, we need = 0
1

1
=
5

2
=

6

3
= 3

2
, = 3

2
. So the line intersects the -plane

at 3
2 0

3
2
.

16. (a) A vector normal to the plane + 3 = 7 is n = h1 1 3i, and since the line is to be perpendicular to the plane, n is
also a direction vector for the line. Thus parametric equations of the line are = 2 + , = 4 , = 6 + 3 .

(b) On the -plane, = 0. So = 6 + 3 = 0 = 2 in the parametric equations of the line, and therefore = 0

and = 6, giving the point of intersection (0 6 0). For the -plane, = 0 so we get the same point of interesection:

(0 6 0). For the -plane, = 0 which implies = 4, so = 6 and = 18 and the point of intersection is (6 0 18).

17. From Equation 4, the line segment from r0 = 2 i j + 4k to r1 = 4 i + 6 j + k is

r( ) = (1 ) r0 + r1 = (1 )(2 i j+ 4k) + (4 i+ 6 j+ k) = (2 i j+ 4k) + (2 i+ 7 j 3k), 0 1.

18. From Equation 4, the line segment from r0 = 10 i+ 3 j+ k to r1 = 5 i+ 6 j 3k is

r( ) = (1 ) r0 + r1 = (1 )(10 i+ 3 j+ k) + (5 i+ 6 j 3k)

= (10 i+ 3 j+ k) + ( 5 i+ 3 j 4k), 0 1.

The corresponding parametric equations are = 10 5 , = 3 + 3 , = 1 4 , 0 1.

19. Since the direction vectors h2 1 3i and h4 2 5i are not scalar multiples of each other, the lines aren’t parallel. For the
lines to intersect, we must be able to nd one value of and one value of that produce the same point from the respective

parametric equations. Thus we need to satisfy the following three equations: 3 + 2 = 1 + 4 , 4 = 3 2 ,

1 + 3 = 4 + 5 . Solving the last two equations we get = 1, = 0 and checking, we see that these values don’t satisfy the

rst equation. Thus the lines aren’t parallel and don’t intersect, so they must be skew lines.

20. Since the direction vectors are v1 = h 12 9 3i and v2 = h8 6 2i, we have v1 = 3
2
v2 so the lines are parallel.

21. Since the direction vectors h1 2 3i and h1 3 7i aren’t scalar multiples of each other, the lines aren’t parallel. Parametric
equations of the lines are 1: = 2+ , = 3 2 , = 1 3 and 2: = 3+ , = 4+ 3 , = 2 7 . Thus, for the

lines to intersect, the three equations 2+ = 3+ , 3 2 = 4+ 3 , and 1 3 = 2 7 must be satis ed simultaneously.

Solving the rst two equations gives = 2, = 1 and checking, we see that these values do satisfy the third equation, so the

lines intersect when = 2 and = 1, that is, at the point (4 1 5).
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276 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

22. The direction vectors h1 1 3i and h2 2 7i are not parallel, so neither are the lines. Parametric equations for the lines are
1: = , = 1 , = 2 + 3 and 2: = 2 + 2 , = 3 2 , = 7 . Thus, for the lines to interesect, the three

equations = 2+ 2 , 1 = 3 2 , and 2 + 3 = 7 must be satis ed simultaneously. Solving the last two equations gives

= 10, = 4 and checking, we see that these values don’t satisfy the rst equation. Thus the lines aren’t parallel and

don’t intersect, so they must be skew.

23. Since the plane is perpendicular to the vector h1 2 5i, we can take h1 2 5i as a normal vector to the plane.
(0 0 0) is a point on the plane, so setting = 1, = 2, = 5 and 0 = 0, 0 = 0, 0 = 0 in Equation 7 gives

1( 0) + ( 2)( 0) + 5( 0) = 0 or 2 + 5 = 0 as an equation of the plane.

24. 2 i+ j k = h2 1 1i is a normal vector to the plane and (5 3 5) is a point on the plane, so setting = 2, = 1, = 1

0 = 5, 0 = 3, 0 = 5 in Equation 7 gives 2( 5) + 1( 3) + ( 1)( 5) = 0 or 2 + = 8 as an equation of the

plane.

25. i+ 4 j+ k = h1 4 1i is a normal vector to the plane and 1 1
2
3 is a point on the plane, so setting = 1, = 4, = 1

0 = 1, 0 =
1
2
, 0 = 3 in Equation 7 gives 1[ ( 1)] + 4 1

2
+ 1( 3) = 0 or + 4 + = 4 as an equation of

the plane.

26. Since the line is perpendicular to the plane, its direction vector h3 1 4i is a normal vector to the plane. The point (2 0 1) is
on the plane, so an equation of the plane is 3( 2) + ( 1)( 0) + 4( 1) = 0 or 3 + 4 = 10.

27. Since the two planes are parallel, they will have the same normal vectors. So we can take n = h5 1 1i, and an equation of
the plane is 5( 1) 1[ ( 1)] 1[ ( 1)] = 0 or 5 = 7.

28. Since the two planes are parallel, they will have the same normal vectors. A normal vector for the plane = + or

+ = 0 is n = h1 1 1i, and an equation of the desired plane is 1( 2) + 1( 4) 1( 6) = 0 or

+ = 0 (the same plane!).

29. Since the two planes are parallel, they will have the same normal vectors. So we can take n = h1 1 1i, and an equation of the

plane is 1( 1) + 1 1
2
+ 1 1

3
= 0 or + + = 11

6 or 6 + 6 + 6 = 11.

30. First, a normal vector for the plane 5 + 2 + = 1 is n = h5 2 1i. A direction vector for the line is v = h1 1 3i, and
since n · v = 0 we know the line is perpendicular to n and hence parallel to the plane. Thus, there is a parallel plane which
contains the line. By putting = 0, we know that the point (1 2 4) is on the line and hence the new plane. We can use the

same normal vector n = h5 2 1i, so an equation of the plane is 5( 1) + 2( 2) + 1( 4) = 0 or 5 + 2 + = 13.

31. Here the vectors a = h1 0 0 1 1 1i = h1 1 0i and b = h1 0 1 1 0 1i = h1 0 1i lie in the plane, so
a× b is a normal vector to the plane. Thus, we can take n = a× b = h1 0 0 + 1 0 + 1i = h1 1 1i. If 0 is the point

(0 1 1), an equation of the plane is 1( 0) + 1( 1) + 1( 1) = 0 or + + = 2.
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 277

32. Here the vectors a = h2 4 6i and b = h5 1 3i lie in the plane, so
n = a× b = h 12 6 30 6 2 + 20i = h 18 24 22i is a normal vector to the plane and an equation of the plane is
18( 0) + 24( 0) + 22( 0) = 0 or 18 + 24 + 22 = 0.

33. Here the vectors a = h8 3 2 ( 1) 4 2i = h5 3 2i and b = h 1 3 2 ( 1) 3 2i = h 4 1 5i lie in
the plane, so a normal vector to the plane is n = a× b = h 15 + 2 8 + 25 5 + 12i = h 13 17 7i and an equation of
the plane is 13( 3) + 17[ ( 1)] + 7( 2) = 0 or 13 + 17 + 7 = 42.

34. If we rst nd two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given

line lies in the plane, its direction vector a = h3 1 1i is one vector in the plane. We can verify that the given point (1 2 3)
does not lie on this line, so to nd another nonparallel vector b which lies in the plane, we can pick any point on the line and

nd a vector connecting the points. If we put = 0, we see that (0 1 2) is on the line, so

b = h1 0 2 1 3 2i = h1 1 1i and n = a× b = h1 + 1 1 3 3 1i = h2 4 2i. Thus, an equation of the plane
is 2( 1) 4( 2) + 2( 3) = 0 or 2 4 + 2 = 0. (Equivalently, we can write 2 + = 0.)

35. If we rst nd two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given

line lies in the plane, its direction vector a = h 2 5 4i is one vector in the plane. We can verify that the given point (6 0 2)

does not lie on this line, so to nd another nonparallel vector b which lies in the plane, we can pick any point on the line and

nd a vector connecting the points. If we put = 0, we see that (4 3 7) is on the line, so

b = h6 4 0 3 2 7i = h2 3 9i and n = a× b = h 45 + 12 8 18 6 10i = h 33 10 4i. Thus, an
equation of the plane is 33( 6) 10( 0) 4[ ( 2)] = 0 or 33 + 10 + 4 = 190.

36. Since the line = 2 = 3 , or =
1 2

=
1 3

, lies in the plane, its direction vector a = 1 1
2

1
3
is parallel to the plane.

The point (0 0 0) is on the line (put = 0), and we can verify that the given point (1 1 1) in the plane is not on the line.

The vector connecting these two points, b = h1 1 1i, is therefore parallel to the plane, but not parallel to h1 2 3i. Then

a× b = 1
2
+ 1

3
1
3

1 1 1
2
= 5

6
2
3

3
2
is a normal vector to the plane, and an equation of the plane is

5
6
( 0) 2

3
( 0) 3

2
( 0) = 0 or 5 4 9 = 0.

37. A direction vector for the line of intersection is a = n1 × n2 = h1 1 1i × h2 1 3i = h2 5 3i, and a is parallel to the
desired plane. Another vector parallel to the plane is the vector connecting any point on the line of intersection to the given

point ( 1 2 1) in the plane. Setting = 0, the equations of the planes reduce to = 2 and + 3 = 1 with

simultaneous solution = 7
2
and = 3

2
. So a point on the line is 0 7

2
3
2
and another vector parallel to the plane is

1 3
2

1
2
. Then a normal vector to the plane is n = h2 5 3i × 1 3

2
1
2
= h 2 4 8i and an equation of

the plane is 2( + 1) + 4( 2) 8( 1) = 0 or 2 + 4 = 1.
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278 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

38. The points (0 2 5) and ( 1 3 1) lie in the desired plane, so the vector v1 = h 1 5 4i connecting them is parallel to
the plane. The desired plane is perpendicular to the plane 2 = 5 + 4 or 5 + 4 2 = 0 and for perpendicular planes,

a normal vector for one plane is parallel to the other plane, so v2 = h5 4 2i is also parallel to the desired plane.
A normal vector to the desired plane is n = v1 × v2 = h 10 + 16 20 2 4 25i = h6 22 29i.
Taking ( 0 0 0) = (0 2 5), the equation we are looking for is 6( 0) 22( + 2) 29( 5) = 0 or

6 22 29 = 101.

39. If a plane is perpendicular to two other planes, its normal vector is perpendicular to the normal vectors of the other two planes.

Thus h2 1 2i × h1 0 3i = h3 0 2 6 0 1i = h3 8 1i is a normal vector to the desired plane. The point
(1 5 1) lies on the plane, so an equation is 3( 1) 8( 5) ( 1) = 0 or 3 8 = 38.

40. n1 = h1 0 1i and n2 = h0 1 2i. Setting = 0, it is easy to see that (1 3 0) is a point on the line of intersection of

= 1 and + 2 = 3. The direction of this line is v1 = n1 × n2 = h1 2 1i. A second vector parallel to the desired
plane is v2 = h1 1 2i, since it is perpendicular to + 2 = 1. Therefore, a normal of the plane in question is

n = v1 × v2 = h4 1 1 + 2 1 + 2i = h3 3 3i, or we can use h1 1 1i. Taking ( 0 0 0) = (1 3 0), the equation we are

looking for is ( 1) + ( 3) + = 0 + + = 4.

41. To nd the -intercept we set = = 0 in the equation 2 + 5 + = 10

and obtain 2 = 10 = 5 so the -intercept is (5 0 0). When

= = 0 we get 5 = 10 = 2, so the -intercept is (0 2 0).

Setting = = 0 gives = 10, so the -intercept is (0 0 10) and we

graph the portion of the plane that lies in the rst octant.

42. To nd the -intercept we set = = 0 in the equation 3 + + 2 = 6

and obtain 3 = 6 = 2 so the -intercept is (2 0 0). When

= = 0 we get = 6 so the -intercept is (0 6 0). Setting = = 0

gives 2 = 6 = 3, so the -intercept is (0 0 3). The gure shows

the portion of the plane that lies in the rst octant.

43. Setting = = 0 in the equation 6 3 + 4 = 6 gives 6 = 6

= 1, when = = 0 we have 3 = 6 = 2, and = = 0

implies 4 = 6 = 3
2 , so the intercepts are (1 0 0), (0 2 0), and

(0 0 3
2
). The gure shows the portion of the plane cut off by the coordinate

planes.
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44. Setting = = 0 in the equation 6 + 5 3 = 15 gives 6 = 15

= 5
2
, when = = 0 we have 5 = 15 = 3, and = = 0

implies 3 = 15 = 5, so the intercepts are (5
2
0 0), (0 3 0),

and (0 0 5). The gure shows the portion of the plane cut off by the

coordinate planes.

45. Substitute the parametric equations of the line into the equation of the plane: (3 ) (2 + ) + 2(5 ) = 9

8 = 8 = 1. Therefore, the point of intersection of the line and the plane is given by = 3 1 = 2, = 2 + 1 = 3,

and = 5(1) = 5 that is, the point (2 3 5).

46. Substitute the parametric equations of the line into the equation of the plane: (1 + 2 ) + 2(4 ) (2 3 ) + 1 = 0

13 = 0 = 0. Therefore, the point of intersection of the line and the plane is given by = 1 + 2(0) = 1,

= 4(0) = 0, and = 2 3(0) = 2 that is, the point (1 0 2).

47. Parametric equations for the line are = , = 1 + , = 1
2
and substituting into the equation of the plane gives

4( ) (1 + ) + 3 1
2

= 8 9
2
= 9 = 2. Thus = 2, = 1 + 2 = 3, = 1

2
(2) = 1 and the point of

intersection is (2 3 1).

48. A direction vector for the line through (1 0 1) and (4 2 2) is v = h3 2 1i and, taking 0 = (1 0 1), parametric

equations for the line are = 1 + 3 , = 2 , = 1 + . Substitution of the parametric equations into the equation of the

plane gives 1+ 3 2 +1+ = 6 = 2. Then = 1+3(2) = 7, = 2(2) = 4, and = 1+2 = 3 so the point

of intersection is (7 4 3).

49. Setting = 0, we see that (0 1 0) satis es the equations of both planes, so that they do in fact have a line of intersection.

v = n1 × n2 = h1 1 1i × h1 0 1i = h1 0 1i is the direction of this line. Therefore, direction numbers of the intersecting
line are 1, 0, 1.

50. The angle between the two planes is the same as the angle between their normal vectors. The normal vectors of the

two planes are h1 1 1i and h1 2 3i. The cosine of the angle between these two planes is

cos =
h1 1 1i · h1 2 3i
|h1 1 1i| |h1 2 3i| =

1+ 2 + 3

1 + 1 + 1 1 + 4 + 9
=

6

42
=

6

7
.

51. Normal vectors for the planes are n1 = h1 4 3i and n2 = h 3 6 7i, so the normals (and thus the planes) aren’t parallel.
But n1 · n2 = 3 + 24 21 = 0, so the normals (and thus the planes) are perpendicular.

52. Normal vectors for the planes are n1 = h 1 4 2i and n2 = h3 12 6i. Since n2 = 3n1, the normals (and thus the

planes) are parallel.

53. Normal vectors for the planes are n1 = h1 1 1i and n2 = h1 1 1i. The normals are not parallel, so neither are the planes.
Furthermore, n1 · n2 = 1 1 + 1 = 1 6= 0, so the planes aren’t perpendicular. The angle between them is given by

cos =
n1 · n2
|n1| |n2| =

1

3 3
=
1

3
= cos 1 1

3
70 5 .
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280 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

54. The normals are n1 = h2 3 4i and n2 = h1 6 4i so the planes aren’t parallel. Since n1 · n2 = 2 18 + 16 = 0, the

normals (and thus the planes) are perpendicular.

55. The normals are n1 = h1 4 2i and n2 = h2 8 4i. Since n2 = 2n1, the normals (and thus the planes) are parallel.

56. The normal vectors are n1 = h1 2 2i and n2 = h2 1 2i. The normals are not parallel, so neither are the planes.
Furthermore, n1 · n2 = 2 2 + 4 = 4 6= 0, so the planes aren’t perpendicular. The angle between them is given by

cos =
n1 · n2
|n1| |n2| =

4

9 9
=
4

9
= cos 1 4

9
63 6 .

57. (a) To nd a point on the line of intersection, set one of the variables equal to a constant, say = 0. (This will fail if the line of

intersection does not cross the -plane; in that case, try setting or equal to 0.) The equations of the two planes reduce

to + = 1 and + 2 = 1. Solving these two equations gives = 1, = 0. Thus a point on the line is (1 0 0).

A vector v in the direction of this intersecting line is perpendicular to the normal vectors of both planes, so we can take

v = n1 × n2 = h1 1 1i × h1 2 2i = h2 2 1 2 2 1i = h0 1 1i. By Equations 2, parametric equations for the
line are = 1, = , = .

(b) The angle between the planes satis es cos =
n1 · n2
|n1| |n2| =

1 + 2 + 2

3 9
=

5

3 3
. Therefore = cos 1 5

3 3
15 8 .

58. (a) If we set = 0 then the equations of the planes reduce to 3 2 = 1 and 2 + = 3 and solving these two equations

gives = 1, = 1. Thus a point on the line of intersection is (1 1 0). A vector v in the direction of this intersecting line

is perpendicular to the normal vectors of both planes, so let v = n1 × n2 = h3 2 1i × h2 1 3i = h5 11 7i. By
Equations 2, parametric equations for the line are = 1 + 5 , = 1 + 11 , = 7 .

(b) cos =
n1 · n2
|n1| |n2| =

6 2 3

14 14
=
1

14
= cos 1 1

14
85 9 .

59. Setting = 0, the equations of the two planes become 5 2 = 1 and 4 + = 6. Solving these two equations gives

= 1, = 2 so a point on the line of intersection is (1 2 0). A vector v in the direction of this intersecting line is

perpendicular to the normal vectors of both planes. So we can use v = n1 × n2 = h5 2 2i × h4 1 1i = h0 13 13i or

equivalently we can take v = h0 1 1i, and symmetric equations for the line are = 1, 2

1
=
1
or = 1, 2 = .

60. If we set = 0 then the equations of the planes reduce to 2 5 = 0 and 4 + 3 5 = 0 and solving these two

equations gives = 2, = 1. Thus a point on the line of intersection is (2 1 0). A vector v in the

direction of this intersecting line is perpendicular to the normal vectors of both planes, so take

v = n1 ×n2 = h2 1 1i × h4 3 1i = h4 2 10i or equivalently we can take v = h2 1 5i. Symmetric equations for

the line are 2

2
=

+ 1

1
=
5
.

61. The distance from a point ( ) to (1 0 2) is 1 = ( 1)2 + 2 + ( + 2)2 and the distance from ( ) to

(3 4 0) is 2 = ( 3)2 + ( 4)2 + 2. The plane consists of all points ( ) where 1 = 2
2
1 =

2
2
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( 1)2 + 2 + ( + 2)2 = ( 3)2 + ( 4)2 + 2

2 2 + 2 + 2 + 4 + 5 = 2 6 + 2 8 + 2 + 25 4 + 8 + 4 = 20 so an equation for the plane is

4 + 8 + 4 = 20 or equivalently + 2 + = 5.

Alternatively, you can argue that the segment joining points (1 0 2) and (3 4 0) is perpendicular to the plane and the plane

includes the midpoint of the segment.

62. The distance from a point ( ) to (2 5 5) is 1 = ( 2)2 + ( 5)2 + ( 5)2 and the distance from ( )

to ( 6 3 1) is 2 = ( + 6)2 + ( 3)2 + ( 1)2. The plane consists of all points ( ) where 1 = 2

2
1 =

2
2 ( 2)2 + ( 5)2 + ( 5)2 = ( + 6)2 + ( 3)2 + ( 1)2

2 4 + 2 10 + 2 10 + 54 = 2 + 12 + 2 6 + 2 2 + 46 16 + 4 + 8 = 8 so an equation

for the plane is 16 + 4 + 8 = 8 or equivalently 4 + + 2 = 2.

63. The plane contains the points ( 0 0), (0 0) and (0 0 ). Thus the vectors a = h 0i and b = h 0 i lie in the

plane, and n = a× b = h 0 0 + 0 + i = h i is a normal vector to the plane. The equation of the plane is
therefore + + = + 0 + 0 or + + = . Notice that if 6= 0, 6= 0 and 6= 0 then we can

rewrite the equation as + + = 1. This is a good equation to remember!

64. (a) For the lines to intersect, we must be able to nd one value of and one value of satisfying the three equations

1+ = 2 , 1 = and 2 = 2. From the third we get = 1, and putting this in the second gives = 0. These values

of and do satisfy the rst equation, so the lines intersect at the point 0 = (1 + 1 1 1 2(1)) = (2 0 2).

(b) The direction vectors of the lines are h1 1 2i and h 1 1 0i, so a normal vector for the plane is

h 1 1 0i × h1 1 2i = h2 2 0i and it contains the point (2 0 2). Then an equation of the plane is

2( 2) + 2( 0) + 0( 2) = 0 + = 2.

65. Two vectors which are perpendicular to the required line are the normal of the given plane, h1 1 1i, and a direction vector for

the given line, h1 1 2i. So a direction vector for the required line is h1 1 1i × h1 1 2i = h3 1 2i. Thus is given

by h i = h0 1 2i+ h3 1 2i, or in parametric form, = 3 , = 1 , = 2 2 .

66. Let be the given line. Then (1 1 0) is the point on corresponding to = 0. is in the direction of a = h1 1 2i

and b = h 1 0 2i is the vector joining (1 1 0) and (0 1 2). Then

b proja b = h 1 0 2i h1 1 2i · h 1 0 2i
12 + ( 1)2 + 22

h1 1 2i = h 1 0 2i 1
2
h1 1 2i = 3

2
1
2
1 is a direction vector

for the required line. Thus 2 3
2

1
2
1 = h 3 1 2i is also a direction vector, and the line has parametric equations = 3 ,

= 1 + , = 2 + 2 . (Notice that this is the same line as in Exercise 65.)
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282 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

67. Let have normal vector n . Then n1 = h3 6 3i, n2 = h4 12 8i, n3 = h3 9 6i, n4 = h1 2 1i. Now n1 = 3n4,

so n1 and n4 are parallel, and hence 1 and 4 are parallel; similarly 2 and 3 are parallel because n2 = 4
3
n3. However, n1

and n2 are not parallel (so not all four planes are parallel). Notice that the point (2 0 0) lies on both 1 and 4, so these two

planes are identical. The point 5
4
0 0 lies on 2 but not on 3, so these are different planes.

68. Let have direction vector v . Rewrite the symmetric equations for 3 as
1

1 2
=

1

1 4
=

+ 1

1
; then v1 = h6 3 12i,

v2 = h2 1 4i, v3 = 1
2

1
4
1 , and v4 = h4 2 8i. v1 = 12v3, so 1 and 3 are parallel. v4 = 2v2, so 2 and 4 are

parallel. (Note that 1 and 2 are not parallel.) 1 contains the point (1 1 5), but this point does not lie on 3, so they’re not

identical. (3 1 5) lies on 4 and also on 2 (for = 1), so 2 and 4 are the same line.

69. Let = (1 3 4) and = (2 1 1), points on the line corresponding to = 0 and = 1. Let

= (4 1 2). Then a = = h1 2 3i, b = = h3 2 6i. The distance is

=
|a× b|
|a| =

|h1 2 3i × h3 2 6i|
|h1 2 3i| =

|h6 3 4i|
|h1 2 3i| =

62 + ( 3)2 + 42

12 + ( 2)2 + ( 3)2
=

61

14
=

61

14
.

70. Let = (0 6 3) and = (2 4 4), points on the line corresponding to = 0 and = 1. Let

= (0 1 3). Then a = = h2 2 1i and b = = h0 5 0i. The distance is

=
|a× b|
|a| =

|h2 2 1i × h0 5 0i|
|h2 2 1i| =

|h5 0 10i|
|h2 2 1i| =

52 + 02 + ( 10)2

22 + ( 2)2 + 12
=

125

9
=
5 5

3
.

71. By Equation 9, the distance is =
| 1 + 1 + 1 + |

2 + 2 + 2
=
|3(1) + 2( 2) + 6(4) 5|

32 + 22 + 62
=
|18|
49
=
18

7
.

72. By Equation 9, the distance is =
|1( 6) 2(3) 4(5) 8|

12 + ( 2)2 + ( 4)2
=
| 40|
21

=
40

21
.

73. Put = = 0 in the equation of the rst plane to get the point (2 0 0) on the plane. Because the planes are parallel, the

distance between them is the distance from (2 0 0) to the second plane. By Equation 9,

=
|4(2) 6(0) + 2(0) 3|

42 + ( 6)2 + (2)2
=

5

56
=

5

2 14
or 5 14

28
.

74. Put = = 0 in the equation of the rst plane to get the point (0 0 0) on the plane. Because the planes are parallel the

distance between them is the distance from (0 0 0) to the second plane 3 6 + 9 1 = 0. By Equation 9,

=
|3(0) 6(0) + 9(0) 1|

32 + ( 6)2 + 92
=

1

126
=

1

3 14
.

75. The distance between two parallel planes is the same as the distance between a point on one of the planes and the other plane.

Let 0 = ( 0 0 0) be a point on the plane given by + + + 1 = 0. Then 0 + 0 + 0 + 1 = 0 and the
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distance between 0 and the plane given by + + + 2 = 0 is, from Equation 9,

=
| 0 + 0 + 0 + 2|

2 + 2 + 2
=

| 1 + 2|
2 + 2 + 2

=
| 1 2|
2 + 2 + 2

.

76. The planes must have parallel normal vectors, so if + + + = 0 is such a plane, then for some 6= 0,
h i = h1 2 2i = h 2 2 i. So this plane is given by the equation + 2 2 + = 0, where = . By

Exercise 75, the distance between the planes is 2 = |1 |
12 + 22 + ( 2)2

6 = |1 | = 7 or 5. So the

desired planes have equations + 2 2 = 7 and + 2 2 = 5.

77. 1: = = = (1). 2: + 1 = 2 = 3 + 1 = 2 (2). The solution of (1) and (2) is

= = 2. However, when = 2, = = 2, but + 1 = 3 = 3, a contradiction. Hence the

lines do not intersect. For 1, v1 = h1 1 1i, and for 2, v2 = h1 2 3i, so the lines are not parallel. Thus the lines are skew
lines. If two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew lines

would be the same as the distance between these parallel planes. The common normal vector to the planes must be

perpendicular to both h1 1 1i and h1 2 3i, the direction vectors of the two lines. So set
n = h1 1 1i × h1 2 3i = h3 2 3 + 1 2 1i = h1 2 1i. From above, we know that ( 2 2 2) and ( 2 2 3)

are points of 1 and 2 respectively. So in the notation of Equation 8, 1( 2) 2( 2) + 1( 2) + 1 = 0 1 = 0 and

1( 2) 2( 2) + 1( 3) + 2 = 0 2 = 1.

By Exercise 75, the distance between these two skew lines is =
|0 1|
1 + 4 + 1

=
1

6
.

Alternate solution (without reference to planes): A vector which is perpendicular to both of the lines is

n = h1 1 1i × h1 2 3i = h1 2 1i. Pick any point on each of the lines, say ( 2 2 2) and ( 2 2 3), and form the

vector b = h0 0 1i connecting the two points. The distance between the two skew lines is the absolute value of the scalar

projection of b along n, that is, =
|n · b|
|n| =

|1 · 0 2 · 0 + 1 · 1|
1 + 4 + 1

=
1

6
.

78. First notice that if two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew

lines would be the same as the distance between these parallel planes. The common normal vector to the planes must be

perpendicular to both v1 = h1 6 2i and v2 = h2 15 6i, the direction vectors of the two lines respectively. Thus set
n = v1 × v2 = h36 30 4 6 15 12i = h6 2 3i. Setting = 0 and = 0 gives the points (1 1 0) and (1 5 2).

So in the notation of Equation 8, 6 2 + 0 + 1 = 0 1 = 4 and 6 10 6 + 2 = 0 2 = 10.

Then by Exercise 75, the distance between the two skew lines is given by =
| 4 10|
36 + 4 + 9

=
14

7
= 2.

Alternate solution (without reference to planes): We already know that the direction vectors of the two lines are

v1 = h1 6 2i and v2 = h2 15 6i. Then n = v1 × v2 = h6 2 3i is perpendicular to both lines. Pick any point on
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0.0.3 Questions Solutions on Absolute Max and Min



The absolute minimum is at  since gives the smallest function value and the absolute maximum occurs at  and  since
these two points give the largest function value.

Here is a sketch of the function on the rectangle for reference purposes.

As this example has shown these can be very long problems on occasion. Let’s take a look at an easier, well shorter anyway, problem with a
different kind of boundary.

Example 2 Find the absolute minimum and absolute maximum of  on the disk of radius 4, 

f (0, 0) = 4 f (1, −1) = 11 f (1, 1) = 7

f (1, ) = 4.75 f (−1, 1) = 7 f (−1, −1) = 11

f (−1, ) = 4.75 f (0, 1) = 8 f (0, −1) = 8

1

4

1

4

(0, 0) (1, −1) (−1, −1)

f (x, y) = 2x2 − y2 + 6y x2 + y2 ≤ 16

First note that a disk of radius 4 is given by the inequality in the problem statement. The “less than” inequality is included to get the interior of 
the disk and the equal sign is included to get the boundary. Of course, this also means that the boundary of the disk is a circle of radius 4.

Let’s first find the critical points of the function that lies inside the disk. This will require the following two first order partial derivatives.

fx = 4x fy = −2y + 6

To find the critical points we’ll need to solve the following system.

22



This is actually a fairly simple system to solve however. The first equation tells us that  and the second tells us that . So, the only
critical point for this function is  and this is inside the disk of radius 4. The function value at this critical point is,

Now we need to look at the boundary. This one will be somewhat different from the previous example. In this case we don’t have fixed
values of  and  on the boundary. Instead we have,

We can solve this for  and plug this into the  in  to get a function of  as follows.

We will need to find the absolute extrema of this function on the range  (this is the range of ’s for the disk….). We’ll first need
the critical points of this function.

The value of this function at the critical point and the endpoints are,

Unlike the first example we will still need to find the values of  that correspond to these. We can do this by plugging the value of  into our
equation for the circle and solving for .

The function values for  then correspond to the following function values for .

4x = 0
−2y + 6 = 0

x = 0 y = 3
(0, 3)

f (0, 3) = 9

x y

x2 + y2 = 16

x2 x2 f (x, y) y

x2 = 16 − y2

g (y) = 2 (16 − y2) − y2 + 6y = 32 − 3y2 + 6y

−4 ≤ y ≤ 4 y

g′ (y) = −6y + 6 ⇒ y = 1

g (−4) = −40 g (4) = 8 g (1) = 35

x y
x

y = −4 : x2 = 16 − 16 = 0 ⇒ x = 0

y = 4 : x2 = 16 − 16 = 0 ⇒ x = 0

y = 1 : x2 = 16 − 1 = 15 ⇒ x = ±√15 = ±3.87

g (y) f (x, y)

g (−4) = −40 ⇒ f (0, −4) = −40

g (4) = 8 ⇒ f (0, 4) = 8

g (1) = 35 ⇒ f (−√15, 1) = 35 and f (√15, 1) = 35
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Note that the third one actually corresponded to two different values for  since that  also produced two different values of .

So, comparing these values to the value of the function at the critical point of  that we found earlier we can see that the absolute

minimum occurs at  while the absolute maximum occurs twice at  and .

Here is a sketch of the region for reference purposes.

In both of these examples one of the absolute extrema actually occurred at more than one place. Sometimes this will happen and sometimes
it won’t so don’t read too much into the fact that it happened in both examples given here.

Also note that, as we’ve seen, absolute extrema will often occur on the boundaries of these regions, although they don’t have to occur at the
boundaries. Had we given much more complicated examples with multiple critical points we would have seen examples where the absolute
extrema occurred interior to the region and not on the boundary.

f (x, y) y x

f (x, y)

(0, −4) (−√15, 1) (√15, 1)

P
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1. Find the absolute minimum and absolute maximum of  on the triangle with vertices ,  and 
.

We’ll need the first order derivatives to start the problem off. Here they are,

We need to find the critical points for this problem. That means solving the following system.

So, we have two possible options from the second equation. We can plug each into the first equation to get the critical points for the equation.

 

Okay, we have the three critical points listed above. Also recall that we only use critical points that are actually in the region we are working
with. In this case, the last two have  values that clearly are out of the region (we’ve sketched the region in the next step if you aren’t sure you
believe this!) and so we can ignore them.

f (x, y) = 192x3 + y2 − 4xy2 (0, 0) (4, 2)
(−2, 2)

fx = 576x2 − 4y2 fy = 2y − 8xy

fx = 0 : 576x2 − 4y2 = 0

fy = 0 : 2y (1 − 4x) = 0 → y = 0 or x =
1

4

y = 0 : 576x2 = 0 → x = 0 ⇒ (0, 0)

x = : 36 − 4y2 = 0 → y = ±3 ⇒ ( , 3) and ( , −3)1
4

1
4

1
4

y
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Each of the sides of the triangle can then be defined as follows.

Top : 

Right : 

Left : 

  that might occur on the boundary.

We’ll need to identify the points along the top that could be potential absolute extrema for . This, in essence, requires us to find the
potential absolute extrema of the following equation on the interval .

Therefore, the only critical point from this list that we need to use is the first. Note as well that, in this case, this also happens to be one of the 
points that define the boundary of the region. This will happen on occasion but won’t always.

So, we’ll need the function value for the only critical point that is actually in our region. Here is that value,

f (0, 0) = 0

Now, we know that absolute extrema can occur on the boundary. So, let’s start off with a quick sketch of the region we’re working on.

y = 2, −2 ≤ x ≤ 4

y = x, 0 ≤ x ≤ 41
2

y = −x, −2 ≤ x ≤ 0

f (x, y)Now we need to analyze each of these sides to get potential absolute extrema for 

Let’s first check out the top :y = 2, −2 ≤ x ≤ 4.

f (x, y)
−2 ≤ x ≤ 4
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The critical point(s) for  are,

So, these two points as well as the  limits for the top give the following four points that are potential absolute extrema for .

Recall that, in this step, we are assuming that ! So, the next set of potential absolute extrema for  are then,

. For this side we’ll need to identify possible absolute extrema of the following function

The critical point(s) for the  from this step are,

Now, recall what we are restricted to the interval  for this portion of the problem and so the second critical point above will not be
used as it lies outside this interval.

So, the single point from above that is in the interval  as well as the  limits for the right give the following two points that are
potential absolute extrema for .

Recall that, in this step, we are assuming that ! Also note that, in this case, one of the critical points ended up also being one of the
endpoints.

Therefore, the next set of potential absolute extrema for  are then,

g (x)

g′ (x) = 576x2 − 16 = 0 → x = ±
1

6

x f (x, y)

( , 2) (− , 2) (−2, 2) (4, 2)
1

6

1

6

y = 2 f (x, y)

f ( , 2) = f (− , 2) = f (−2, 2) = −1, 500 f (4, 2) = 12, 228
1

6

20

9

1

6

52

9

y = x, 0 ≤ x ≤ 41
2Next let’s check out the right side : 

on the interval 0 ≤ x ≤ 4.

g (x) = f (x, x) = x2 + 191x31

2

1

4

g (x)

g′ (x) = x + 573x2 = x( + 573x) = 0 → x = 0, x = −
1

2

1

2

1

1146

0 ≤ x ≤ 4

0 ≤ x ≤ 4 x
f (x, y)

(0, 0) (4, 2)

y = x1
2

f (x, y)
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Before proceeding to the next step note that both of these have already appeared in previous steps. This will happen on occasion but we 
can’t, in many cases, expect this to happen so we do need to go through and do the work for each boundary.

The main exception to this is usually the endpoints of our intervals as they will always be shared in two of the boundary checks and so, once 
done, don’t really need to be checked again. We just included the endpoints here for completeness.

Finally, let’s check out the left side : . For this side we’ll need to identify possible absolute extrema of the following
function on the interval .

The critical point(s) for the  from this step are,

Both of these are in the interval  that we are restricted to for this portion of the problem.

So, the two points from above as well as the  limits for the right give the following three points that are potential absolute extrema for 
.

Recall that, in this step we are assuming that ! Also note that, in this case, one of the critical points ended up also being one of the
endpoints.

Therefore, the next set of potential absolute extrema for  are then,

As with the previous step we can note that both of the end points above have already occurred previously in the problem and didn’t really 
need to be checked here. They were just included for completeness.

Okay, in summary, here are all the potential absolute extrema and their function values for this function on the region we are working on.

f (0, 0) = 0 f (4, 2) = 12, 228

y = −x, −2 ≤ x ≤ 0
−2 ≤ x ≤ 0

g (x) = f (x, −x) = x2 + 188x3

g (x)

g′ (x) = 2x + 564x2 = 2x (1 + 282x) = 0 → x = 0, x = −
1

282

−2 ≤ x ≤ 0

x f (x, y)

(− , ) (0, 0) (−2, 2)
1

282

1

282

y = −x

f (x, y)

f (− , ) = f (0, 0) = 0 f (−2, 2) = −1, 500
1

282

1

282

1

238, 572
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From this list we can see that the absolute maximum of the function will be 12,228 which occurs at  and the absolute minimum of the
function will be -1,500 which occurs at .

f ( , 2) = f (− , 2) = f (−2, 2) = −1, 500 f (4, 2) = 12, 228

f (0, 0) = 0 f (− , ) =

1

6

20

9

1

6

52

9

1

282

1

282

1

238, 572

(4, 2)
(−2, 2)
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2. Find the absolute minimum and absolute maximum of  on the rectangle given by , 
.

We’ll need the first order derivatives to start the problem off. Here they are,

We need to find the critical points for this problem. That means solving the following system.

So, we have two possible options from the second equation. We can plug each into the first equation to get the critical points for the equation.

Both of these critical points are in the region we are interested in and so we’ll need the function evaluated at both of them. Here are those
values,

f (x, y) = (9x2 − 1) (1 + 4y) −2 ≤ x ≤ 3
−1 ≤ y ≤ 4

fx = 18x (1 + 4y) fy = 4 (9x2 − 1)

fx = 0 : 18x (1 + 4y) = 0

fy = 0 : 4 (9x2 − 1) = 0 → x = ±
1

3

x = : 6 (1 + 4y) = 0 → y = − ⇒ ( , − )1

3

1

4

1

3

1

4

x = − : −6 (1 + 4y) = 0 → y = − ⇒ (− , − )1

3

1

4

1

3

1

4
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Now, we know that absolute extrema can occur on the boundary. So, let’s start off with a quick sketch of the region we’re working 

on.

Each of the sides of the rectangle can then be defined as follows.

Top :

Bottom : 

Right : 

Left : 

  that might occur on the boundary.

We’ll need to identify the points along the top that could be potential absolute extrema for . This, in essence, requires us to find the
potential absolute extrema of the following equation on the interval .

f ( , − ) = 0 f (− , − ) = 0
1

3

1

4

1

3

1

4

y = 4, −2 ≤ x ≤ 3

y = −1, −2 ≤ x ≤ 3

x = 3, −1 ≤ y ≤ 4

x = −2, −1 ≤ y ≤ 4

f (x, y)Now we need to analyze each of these sides to get potential absolute extrema for 

Let’s first check out the top : y = 4, −2 ≤ x ≤ 3 .

f (x, y)
−2 ≤ x ≤ 3
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The critical point(s) for  are,

This critical point is in the interval we are working on so, this point as well as the  limits for the top give the following three points that are
potential absolute extrema for .

Recall that, in this step, we are assuming that ! So, the next set of potential absolute extrema for  are then,

Next, let’s check out the bottom : . For this side we’ll need to identify possible absolute extrema of the following
function on the interval .

The critical point(s) for the  from this step are,

This critical point is in the interval we are working on so, this point as well as the  limits for the bottom give the following three points that are
potential absolute extrema for .

Recall that, in this step, we are assuming that ! So, the next set of potential absolute extrema for  are then,

Let’s now check out the right side : . For this side we’ll need to identify possible absolute extrema of the following
function on the interval .

The derivative of the  from this step is,

g (x)

g′ (x) = 306x = 0 → x = 0

x
f (x, y)

(0, 4) (−2, 4) (3, 4)

y = 4 f (x, y)

f (0, 4) = −17 f (−2, 4) = 595 f (3, 4) = 1360

y = −1, −2 ≤ x ≤ 3
−2 ≤ x ≤ 3

g (x) = f (x, −1) = −3 (−1 + 9x2)

g (x)

g′ (x) = −54x = 0 → x = 0

x
f (x, y)

(0, −1) (−2, −1) (3, −1)

y = −1 f (x, y)

f (0, −1) = 3 f (−2, −1) = −105 f (3, −1) = −240

x = 3, −1 ≤ y ≤ 4
−1 ≤ y ≤ 4

h (y) = f (3, y) = 80 (1 + 4y)

h (y)

h′ (y) = 320
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In this case there are no critical points of the function along this boundary. So, only the limits for the right side are potential absolute extrema
for .

Recall that, in this step, we are assuming that ! Therefore, the next set of potential absolute extrema for  are then,

Before proceeding to the next step let’s note that both of these points have already been listed in previous steps and so did not really need to 
be written down here. This will always happen with boundary points (as these are here). Boundary points will always show up in multiple 
boundary steps.

Finally, let’s check out the left side : . For this side we’ll need to identify possible absolute extrema of the following
function on the interval .

The derivative of the  from this step is,

In this case there are no critical points of the function along this boundary. So, we only the limits for the right side are potential absolute
extrema for .

Recall that, in this step, we are assuming that ! Therefore, the next set of potential absolute extrema for  are then,

As with the previous step both of these are boundary points and have appeared in previous steps. They were simply listed here for 
completeness.

Okay, in summary, here are all the potential absolute extrema and their function values for this function on the region we are working on.

f (x, y)

(3, −1) (3, 4)

x = 3 f (x, y)

f (3, −1) = −240 f (3, 4) = 1360

x = −2, −1 ≤ y ≤ 4
−1 ≤ y ≤ 4

h (y) = f (−2, y) = 35 (1 + 4y)

h (y)

h′ (y) = 140

f (x, y)

(−2, −1) (−2, 4)

x = −2 f (x, y)

f (−2, −1) = −105 f (−2, 4) = 595

f (0, 4) = −17 f (−2, 4) = 595 f (3, 4) = 1360

f (0, −1) = 3 f (−2, −1) = −105 f (3, −1) = −240
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From this list we can see that the absolute maximum of the function will be 1360 which occurs at  and the absolute minimum of the
function will be -240 which occurs at .

(3, 4)
(3, −1)
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930 CHAPTER 14 PARTIAL DERIVATIVES

1. Homework Hints available at stewartcalculus.com

1–6 Use the Chain Rule to find or .

1. ,  ,  

2. ,  ,  

3. ,  ,  

4. ,  ,  

5. ,  ,  ,  

6. ,  ,  ,  

7–12 Use the Chain Rule to find and .

7. ,  ,  

8. ,  ,  

9. ,  ,  

10. ,  ,  

11. ,  ,  

12. , ,

dz�dt dw�dt

z � x 2 � y 2 � xy x � sin t y � e t

z � cos�x � 4y� x � 5t 4 y � 1�t

z � s1 � x 2 � y 2 x � ln t y � cos t

z � tan�1�y�x� x � e t y � 1 � e�t

w � xe y�z x � t 2 y � 1 � t z � 1 � 2t

w � lnsx 2 � y 2 � z2 x � sin t y � cos t z � tan t

�z��s �z��t

z � x 2y 3 x � s cos t y � s sin t

z � arcsin�x � y� x � s 2 � t 2 y � 1 � 2st

z � sin � cos � � � st 2 � � s 2t

z � e x�2y x � s�t y � t�s

z � e r cos � r � st � � ss 2 � t 2

v � 3s � 2tu � 2s � 3tz � tan�u�v�

13. If , where is differentiable, and

find when .

14. Let , where are differen-
tiable, and

Find and .

15. Suppose is a differentiable function of and , and
. Use the table of values 

to calculate 

16. Suppose is a differentiable function of and , and
Use the table of values in

Exercise 15 to calculate and 

x � t�t� y � h�t�
t�3� � 2 h�3� � 7

t��3� � 5 h��3� � �4

fx�2, 7� � 6 fy�2, 7� � �8

dz�dt t � 3

W�s, t� � F�u�s, t�, v�s, t�� F, u, and v

u�1, 0� � 2 v�1, 0� � 3

us�1, 0� � �2 vs�1, 0� � 5

ut�1, 0� � 6 vt�1, 0� � 4

Fu�2, 3� � �1 Fv�2, 3� � 10

Ws�1, 0� Wt�1, 0�

fz � f �x, y�

yxf
t�u, v� � f �eu � sin v, eu � cos v�

tu�0, 0� and tv�0, 0�.

yxf
t�r, s� � f �2r � s, s 2 � 4r�.

ts�1, 2�.tr�1, 2�

14.5 Exercises

Again, a version of the Implicit Function Theorem stipulates conditions under which 
our assumption is valid: If is defined within a sphere containing , where

, , and , , and are continuous inside the sphere, then the
equation defines as a function of and near the point and this
function is differentiable, with partial derivatives given by .

Find and if .

SOLUTION Let . Then, from Equations 7, we have

�z

�x
� �

�F

�x

�F

�z

�z

�y
� �

�F

�y

�F

�z

F �a, b, c�
F�a, b, c� � 0 Fz�a, b, c� � 0 Fx Fy Fz

F�x, y, z� � 0 z x y �a, b, c�

�z

�x

�z

�y
x 3 � y 3 � z3 � 6xyz � 1

F�x, y, z� � x 3 � y 3 � z3 � 6xyz � 1

�z

�x
� �

Fx

Fz
� �

3x 2 � 6yz

3z2 � 6xy
� �

x 2 � 2yz

z2 � 2xy

�z

�y
� �

Fy

Fz
� �

3y 2 � 6xz

3z2 � 6xy
� �

y 2 � 2xz

z2 � 2xy

EXAMPLE 9

7

7

The solution to Example 9 should be 
compared to the one in Example 4 in 
Section 14.3.

3 6 4 8

6 3 2 5�1, 2�

�0, 0�

fyfxtf
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SECTION 14.5 THE CHAIN RULE ¤ 425

14.5 The Chain Rule

1. = 2 + 2 + , = sin , = = + = (2 + ) cos + (2 + )

2. = cos( + 4 ), = 5 4, = 1

= + = sin( + 4 )(1)(20 3) + [ sin( + 4 )(4)]( 2)

= 20 3 sin( + 4 ) +
4
2
sin( + 4 ) =

4
2

20 3 sin( + 4 )

3. = 1 + 2 + 2, = ln , = cos

= + = 1
2
(1+ 2+ 2) 1 2(2 ) · 1 + 1

2
(1+ 2+ 2) 1 2(2 )( sin ) =

1

1 + 2 + 2
sin

4. = tan 1( ), = , = 1

= + =
1

1 + ( )2
( 2) · +

1

1 + ( )2
(1 ) · ( )( 1)

=
2 + 2

· +
1

+ 2
· =

2 + 2

5. = , = 2, = 1 , = 1 + 2

= + + = · 2 + 1 · ( 1) +
2
· 2 = 2

2
2

6. = ln 2 + 2 + 2 = 1
2
ln( 2 + 2 + 2), = sin , = cos , = tan

= + + =
1

2
· 2

2 + 2 + 2
· cos +

1

2
· 2

2 + 2 + 2
· ( sin ) +

1

2
· 2

2 + 2 + 2
· sec2

=
cos sin + sec2

2 + 2 + 2

7. = 2 3, = cos , = sin

= + = 2 3 cos + 3 2 2 sin

= + = (2 3)( sin ) + (3 2 2)( cos ) = 2 3 sin + 3 2 2 cos

8. = arcsin( ), = 2 + 2, = 1 2

= + =
1

1 ( )2
(1) · 2 +

1

1 ( )2
( 1) · ( 2 ) =

2 + 2

1 ( )2

= + =
1

1 ( )2
(1) · 2 + 1

1 ( )2
( 1) · ( 2 ) =

2 + 2

1 ( )2
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426 ¤ CHAPTER 14 PARTIAL DERIVATIVES

9. = sin cos , = 2, = 2

= + = (cos cos )( 2) + ( sin sin )(2 ) = 2 cos cos 2 sin sin

= + = (cos cos )(2 ) + ( sin sin )( 2) = 2 cos cos 2 sin sin

10. = +2 , = , =

= + = ( +2 )(1 ) + (2 +2 )( 2) = +2 1 2
2

= + = ( +2 )( 2) + (2 +2 )(1 ) = +2 2
2

11. = cos , = , = 2 + 2

= + = cos · + ( sin ) · 1
2
( 2 + 2) 1 2(2 ) = cos sin ·

2 + 2

= cos
2 + 2

sin

= + = cos · + ( sin ) · 1
2
( 2 + 2) 1 2(2 ) = cos sin ·

2 + 2

= cos
2 + 2

sin

12. = tan( ), = 2 + 3 , = 3 2

= + = sec2( )(1 ) · 2 + sec2( )( 2) · 3

=
2
sec2

3
2
sec2 =

2 3
2

sec2

= + = sec2( )(1 ) · 3 + sec2( )( 2) · ( 2)

=
3
sec2 +

2
2
sec2 =

2 + 3
2

sec2

13. When = 3, = (3) = 2 and = (3) = 7. By the Chain Rule (2),

= + = (2 7) 0(3) + (2 7) 0(3) = (6)(5) + ( 8)( 4) = 62.

14. By the Chain Rule (3), = + . Then

(1 0) = ( (1 0) (1 0)) (1 0) + ( (1 0) (1 0)) (1 0) = (2 3) (1 0) + (2 3) (1 0)

= ( 1)( 2) + (10)(5) = 52

Similarly, = +

(1 0) = ( (1 0) (1 0)) (1 0) + ( (1 0) (1 0)) (1 0) = (2 3) (1 0) + (2 3) (1 0)

= ( 1)(6) + (10)(4) = 34
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 943

1. Level curves for barometric pressure (in millibars) are shown
for 6:00 AM on November 10, 1998. A deep low with pressure
972 mb is moving over northeast Iowa. The distance along the
red line from K (Kearney, Nebraska) to S (Sioux City, Iowa) is
300 km. Estimate the value of the directional derivative of the
pressure function at Kearney in the direction of Sioux City.
What are the units of the directional derivative?

2. The contour map shows the average maximum temperature for
November 2004 (in ). Estimate the value of the directional
derivative of this temperature function at Dubbo, New South
Wales, in the direction of Sydney. What are the units?

3. A table of values for the wind-chill index is given
in Exercise 3 on page 911. Use the table to estimate the value
of , where .

4–6 Find the directional derivative of at the given point in the
direction indicated by the angle .

4. ,  ,  

5. ,  ,  

6. ,  ,  

1012

1012

1008

1008

1004
1000
996
992

988

980

976

984

1016
1020
1024

972

K

S

�C

Sydney

Dubbo
30

27 24

24

21
18

0 100 200 300
(Distance in kilometers)

Re
pr

in
te

d 
by

 p
er

m
is

si
on

 o
f t

he
 C

om
m

on
w

ea
lth

 o
f A

us
tra

lia
.

W � f �T, v�

Du f ��20, 30� u � �i � j��s2

f
�

f �x, y� � x 3y 4 � x 4y 3 �1, 1� � � ��6

f �x, y� � ye�x �0, 4� � � 2��3

f �x, y� � e x cos y �0, 0� � � ��4

7–10
(a) Find the gradient of .
(b) Evaluate the gradient at the point .
(c) Find the rate of change of at in the direction of the 

vector .

7. ,  ,  

8. ,  ,  

9. ,  ,  

10. ,  ,  

11–17 Find the directional derivative of the function at the given
point in the direction of the vector .

11. ,  ,  

12. ,  ,  

13. ,  ,  

14. ,  ,  

15. ,  ,  

16. ,  ,  

17. ,  ,  

18. Use the figure to estimate .

19. Find the directional derivative of at in
the direction of .

20. Find the directional derivative of at
in the direction of .

21–26 Find the maximum rate of change of at the given point and
the direction in which it occurs.

21. ,

22. ,

23. ,

24. ,

25. ,

26. ,

f
P

f P
u

f �x, y� � sin�2x � 3y� P��6, 4� u � 1
2 (s3 i � j)

f �x, y� � y 2�x P�1, 2� u � 1
3 (2 i � s5 j)

f �x, y, z� � x 2yz � xyz 3 P�2, �1, 1� u � �0, 4
5, �

3
5 �

f �x, y, z� � y 2e xyz P�0, 1, �1� u � � 3
13 , 4

13 , 12
13 �

v

f �x, y� � e x sin y �0, ��3� v � ��6, 8 �

f �x, y� �
x

x 2 � y 2 �1, 2� v � �3, 5 �

t�p, q� � p4 � p2q3 �2, 1� v � i � 3 j

t�r, s� � tan�1�rs� �1, 2� v � 5 i � 10 j

f �x, y, z� � xe y � ye z � ze x �0, 0, 0� v � �5, 1, �2�

f �x, y, z� � sxyz �3, 2, 6� v � ��1, �2, 2 �

h�r, s, t� � ln�3r � 6s � 9t� �1, 1, 1� v � 4 i � 12 j � 6k

Du f �2, 2�
y

x0

(2, 2)

±f(2, 2)

u

f �x, y� � sxy P�2, 8�
Q�5, 4�

f �x, y, z� � xy � yz � zx
P�1, �1, 3� Q�2, 4, 5�

f

f �x, y� � 4ysx �4, 1�

f �s, t� � te st �0, 2�

f �x, y� � sin�xy� �1, 0�

f �x, y, z� � �x � y��z �1, 1, �1�

f �x, y, z� � sx 2 � y 2 � z 2 �3, 6, �2�

f �p, q, r� � arctan�pqr� �1, 2, 1�

14.6 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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438 ¤ CHAPTER 14 PARTIAL DERIVATIVES

7. ( ) = sin(2 + 3 )

(a) ( ) = i+ j = [cos(2 + 3 ) · 2] i+ [cos(2 + 3 ) · 3] j = 2 cos (2 + 3 ) i+ 3 cos (2 + 3 ) j

(b) ( 6 4) = (2 cos 0) i+ (3 cos 0) j = 2 i+ 3 j

(c) By Equation 9, u ( 6 4) = ( 6 4) · u = (2 i+ 3 j) · 1
2

3 i j = 1
2
2 3 3 = 3 3

2
.

8. ( ) = 2

(a) ( ) = i+ j = 2( 2)i+ (2 ) j =
2

2
i+

2
j

(b) (1 2) = 4 i+ 4 j

(c) By Equation 9, u (1 2) = (1 2) · u = ( 4 i+ 4 j) · 1
3
2 i+ 5 j = 1

3
8 + 4 5 = 4

3
5 2 .

9. ( ) = 2 3

(a) ( ) = h ( ) ( ) ( )i = 2 3 2 3 2 3 2

(b) (2 1 1) = h 4 + 1 4 2 4 + 6i = h 3 2 2i

(c) By Equation 14, u (2 1 1) = (2 1 1) · u = h 3 2 2i · 0 4
5

3
5
= 0 + 8

5
6
5
= 2

5
.

10. ( ) = 2

(a) ( ) = h ( ) ( ) ( )i = 2 ( ) 2 · ( ) + · 2 2 ( )

= 3 ( 2 + 2 ) 3

(b) (0 1 1) = h 1 2 0i

(c) u (0 1 1) = (0 1 1) · u = h 1 2 0i · 3
13

4
13

12
13

= 3
13
+ 8

13
+ 0 = 5

13

11. ( ) = sin ( ) = h sin cos i, (0 3) = 3
2

1
2
, and a

unit vector in the direction of v is u = 1

( 6)2+82
h 6 8i = 1

10
h 6 8i = 3

5
4
5
, so

u (0 3) = (0 3) · u = 3
2

1
2
· 3

5
4
5
= 3 3

10
+ 4

10
= 4 3 3

10
.

12. ( ) =
2 + 2

( ) =
( 2 + 2)(1) (2 )

( 2 + 2)2
0 (2 )

( 2 + 2)2
=

2 2

( 2 + 2)2
2

( 2 + 2)2
,

(1 2) = 3
25

4
25
, and a unit vector in the direction of v = h3 5i is u = 1

9+25
h3 5i = 3

34

5

34
, so

u (1 2) = (1 2) · u = 3
25

4
25

· 3

34

5

34
= 9

25 34

20

25 34
= 11

25 34
.

13. ( ) = 4 2 3 ( ) = 4 3 2 3 i+ 3 2 2 j, (2 1) = 28 i 12 j, and a unit

vector in the direction of v is u = 1

12+32
(i + 3 j) = 1

10
(i + 3 j), so

u (2 1) = (2 1) · u = (28 i 12 j) · 1

10
(i+ 3 j) = 1

10
(28 36) = 8

10
or 4 10

5
.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

41



SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 439

14. ( ) = tan 1( ) ( ) =
1

1 + ( )2
· i+

1

1 + ( )2
· j =

1 + 2 2
i+

1 + 2 2
j,

(1 2) = 2
5
i+ 1

5
j, and a unit vector in the direction of v is u = 1

52+102
(5 i+ 10 j) = 1

5 5
(5 i+ 10 j) = 1

5
i+ 2

5
j,

so u (1 2) = (1 2) · u = ( 2
5
i+ 1

5
j) · ( 1

5
i+ 2

5
j) = 2

5 5
+ 2

5 5
= 4

5 5
or 4 5

25
.

15. ( ) = + + ( ) = h + + + i, (0 0 0) = h1 1 1i, and a unit

vector in the direction of v is u = 1
25+1+4

h5 1 2i = 1

30
h5 1 2i, so

u (0 0 0) = (0 0 0) · u = h1 1 1i · 1

30
h5 1 2i = 4

30
.

16. ( ) =

( ) = 1
2
( ) 1 2 · 1

2
( ) 1 2 · 1

2
( ) 1 2 · =

2 2 2
,

(3 2 6) = 12

2 36

18

2 36

6

2 36
= 1 3

2
1
2
, and a unit vector in the

direction of v is u = 1
1+ 4+4

h 1 2 2i = 1
3

2
3

2
3
, so

u (3 2 6) = (3 2 6) · u = 1 3
2

1
2
· 1

3
2
3

2
3
= 1

3
1 + 1

3
= 1.

17. ( ) = ln(3 + 6 + 9 ) ( ) = h3 (3 + 6 + 9 ) 6 (3 + 6 + 9 ) 9 (3 + 6 + 9 )i,

(1 1 1) = 1
6

1
3

1
2
, and a unit vector in the direction of v = 4 i + 12 j + 6k

is u = 1
16+144+36

(4 i+ 12 j+ 6k) = 2
7
i + 6

7
j + 3

7
k, so

u (1 1 1) = (1 1 1) · u = 1
6

1
3

1
2
· 2

7
6
7

3
7
= 1

21
+ 2

7
+ 3

14
= 23

42
.

18. u (2 2) = (2 2) · u, the scalar projection of (2 2) onto u, so we draw a

perpendicular from the tip of (2 2) to the line containing u. We can use the

point (2 2) to determine the scale of the axes, and we estimate the length of the

projection to be approximately 3.0 units. Since the angle between (2 2) and u

is greater than 90 , the scalar projection is negative. Thus u (2 2) 3.

19. ( ) = ( ) = 1
2
( ) 1 2( ) 1

2
( ) 1 2( ) =

2 2
, so (2 8) = 1 1

4
.

The unit vector in the direction of = h5 2 4 8i = h3 4i is u = 3
5

4
5
, so

u (2 8) = (2 8) · u = 1 1
4
· 3

5
4
5
= 2

5
.

20. ( ) = + + ( ) = h + + + i, so (1 1 3) = h2 4 0i. The unit vector in the

direction of = h1 5 2i is u = 1

30
h1 5 2i, so u (1 1 3) = (1 1 3) · u = h2 4 0i · 1

30
h1 5 2i = 22

30
.
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440 ¤ CHAPTER 14 PARTIAL DERIVATIVES

21. ( ) = 4 ( ) = 4 · 1
2

1 2 4 = h2 4 i.

(4 1) = h1 8i is the direction of maximum rate of change, and the maximum rate is | (4 1)| = 1 + 64 = 65.

22. ( ) = ( ) = ( ) ( ) + (1) = 2 ( + 1) .

(0 2) = h4 1i is the direction of maximum rate of change, and the maximum rate is | (0 2)| = 16 + 1 = 17.

23. ( ) = sin( ) ( ) = h cos( ) cos( )i, (1 0) = h0 1i. Thus the maximum rate of change is

| (1 0)| = 1 in the direction h0 1i.

24. ( ) =
+

( ) =
1 1 +

2
, (1 1 1) = h 1 1 2i. Thus the maximum rate of

change is | (1 1 1)| = 1 + 1 + 4 = 6 in the direction h 1 1 2i.

25. ( ) = 2 + 2 + 2

( ) = 1
2
( 2 + 2 + 2) 1 2 · 2 1

2
( 2 + 2 + 2) 1 2 · 2 1

2
( 2 + 2 + 2) 1 2 · 2

=
2 + 2 + 2 2 + 2 + 2 2 + 2 + 2

(3 6 2) = 3

49

6

49

2

49
= 3

7
6
7

2
7
. Thus the maximum rate of change is

| (3 6 2)| = 3
7

2
+ 6

7

2
+ 2

7

2
= 9+ 36+ 4

49
= 1 in the direction 3

7
6
7

2
7
or equivalently h3 6 2i.

26. ( ) = arctan( ) ( ) =
1 + ( )2 1 + ( )2 1 + ( )2

, (1 2 1) = 2
5

1
5

2
5
. Thus

the maximum rate of change is | (1 2 1)| = 4
25
+ 1

25
+ 4

25
= 9

25
= 3

5
in the direction 2

5
1
5

2
5
or equivalently

h2 1 2i.

27. (a) As in the proof of Theorem 15, u = | | cos . Since the minimum value of cos is 1 occurring when = , the

minimum value of u is | | occurring when = , that is when u is in the opposite direction of

(assuming 6= 0).

(b) ( ) = 4 2 3 ( ) = 4 3 2 3 4 3 2 2 , so decreases fastest at the point (2 3) in the

direction (2 3) = h12 92i = h 12 92i.

28. ( ) = ( ) = ( ) = 2 , ( ) = ( ) + = (1 ) and

(0 2) = 4 0 = 4, (0 2) = (1 0) 0 = 1. If u is a unit vector which makes an angle with the positive -axis,

then u (0 2) = (0 2) cos + (0 2) sin = 4 cos + sin . We want u (0 2) = 1, so 4 cos + sin = 1

sin = 1 + 4 cos sin2 = (1 + 4 cos )2 1 cos2 = 1 + 8cos + 16 cos2
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1002 CHAPTER 15 MULTIPLE INTEGRALS

1– 4 A region is shown. Decide whether to use polar coordinates
or rectangular coordinates and write as an iterated
integral, where is an arbitrary continuous function on .

1. 2.

3. 4.

5 –6 Sketch the region whose area is given by the integral and eval-
uate the integral.

5. 6.

7–14 Evaluate the given integral by changing to polar coordinates.

7. , where is the top half of the disk with center the
origin and radius 5

8. , where is the region in the first quadrant
enclosed by the circle and the lines and

9. , where is the region in the first quadrant
between the circles with center the origin and radii 1 and 3

10. , where is the region that lies between the 

circles and with 

11. , where D is the region bounded by the
semicircle and the y-axis

12. , where is the disk with center the 
origin and radius 2

13. ,
where

R
xxR f �x, y� dA

f R

0 4

4

y

x
0

y

x_1 1

1 y=1-≈

0

y

x_1 1

1

0

y

x

6

3

y3��4

��4
y2

1
r dr d� y�

��2
y2 sin �

0
r dr d�

xxD x 2y dA D

xx
R

�2x � y� dA R
x 2 � y 2 � 4 x � 0

y � x

xx
R

sin�x 2 � y 2� dA R

xx
R

y 2

x 2 � y 2 dA R

x 2 � y 2 � a2 x 2 � y 2 � b2 0 � a � b

xxD e�x2�y2

dA
x � s4 � y 2

DxxD cossx 2 � y 2 dA

xx
R

arctan� y�x� dA
R � ��x, y� � 1 � x 2 � y 2 � 4, 0 � y � x�

14. , where is the region in the first quadrant that lies
between the circles and

15–18 Use a double integral to find the area of the region.

15. One loop of the rose 

16. The region enclosed by both of the cardioids
and

17. The region inside the circle and outside the
circle 

18. The region inside the cardioid and outside the
circle 

19–27 Use polar coordinates to find the volume of the given solid.

19. Under the cone and above the disk 

20. Below the paraboloid and above the 
-plane

21. Enclosed by the hyperboloid and the 
plane

22. Inside the sphere and outside the 
cylinder

23. A sphere of radius 

24. Bounded by the paraboloid and the 
plane in the first octant

25. Above the cone and below the sphere

26. Bounded by the paraboloids and

27. Inside both the cylinder and the ellipsoid

28. (a) A cylindrical drill with radius is used to bore a hole
through the center of a sphere of radius . Find the volume
of the ring-shaped solid that remains.

(b) Express the volume in part (a) in terms of the height of
the ring. Notice that the volume depends only on , not 
on or .

29–32 Evaluate the iterated integral by converting to polar 
coordinates.

29. 30.

31. 32.

Dxx
D

x dA
x 2 � y 2 � 2xx 2 � y 2 � 4

r � cos 3�

r � 1 � cos �
r � 1 � cos �

�x � 1�2 � y 2 � 1
x 2 � y 2 � 1

r � 1 � cos �
r � 3 cos �

x 2 � y 2 � 4z � sx 2 � y 2

z � 18 � 2x 2 � 2y 2

xy

�x 2 � y 2 � z2 � 1
z � 2

x 2 � y 2 � z 2 � 16
x 2 � y 2 � 4

a

z � 1 � 2x 2 � 2y 2

z � 7

z � sx 2 � y 2

x 2 � y 2 � z2 � 1

z � 3x 2 � 3y 2

z � 4 � x 2 � y 2

x 2 � y 2 � 4
4x 2 � 4y 2 � z2 � 64

r1

r2

h
h

r2r1

ya
0
y0

�sa 2 �y 2
x 2 y dx dyy3

�3
ys9�x 2

0
sin�x 2 � y2� dy dx

y2

0
ys2x�x 2

0
sx 2 � y 2 dy dxy1

0
ys2�y 2

y
�x � y� dx dy

15.4 Exercises

1. Homework Hints available at stewartcalculus.com
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534 ¤ CHAPTER 15 MULTIPLE INTEGRALS

67. 3 + 3 + 2 2 = 3 + 3 + 2 2 . Now 3 is odd with respect

to and 3 is odd with respect to , and the region of integration is symmetric with respect to both and ,

so 3 = 3 = 0.

2 2 represents the volume of the solid region under the

graph of = 2 2 and above the rectangle , namely a half circular

cylinder with radius and length 2 (see the figure) whose volume is

1
2
· 2 = 1

2
2(2 ) = 2 . Thus

3 + 3 + 2 2 = 0 + 0 + 2 = 2 .

68. To find the equations of the boundary curves, we require that the

-values of the two surfaces be the same. In Maple, we use the command

solve(4-xˆ2-yˆ2=1-x-y,y); and in Mathematica, we use
Solve[4-xˆ2-yˆ2==1-x-y,y]. We find that the curves have

equations =
1± 13 + 4 4 2

2
. To find the two points of intersection

of these curves, we use the CAS to solve 13 + 4 4 2 = 0, finding that

= 1± 14
2

. So, using the CAS to evaluate the integral, the volume of intersection is

=
(1+ 14 ) 2

(1 14 ) 2

1+ 13+ 4 4 2 2

1 13+4 4 2 2

[(4 2 2) (1 )] =
49

8

15.4 Double Integrals in Polar Coordinates

1. The region is more easily described by polar coordinates: = ( ) | 0 4, 0 3
2
.

Thus ( ) =
3 2

0

4

0
( cos sin ) .

2. The region is more easily described by rectangular coordinates: = ( ) | 1 1, 0 1 2 .

Thus ( ) =
1

1

1 2

0
( ) .

3. The region is more easily described by rectangular coordinates: = ( ) | 1 1, 0 1
2
+ 1

2
.

Thus ( ) =
1

1

( +1) 2

0
( ) .

4. The region is more easily described by polar coordinates: = ( ) | 3 6,
2 2

.

Thus ( ) =
2

2

6

3
( cos sin ) .
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SECTION 15.4 DOUBLE INTEGRALS IN POLAR COORDINATES ¤ 535

5. The integral 3 4

4

2

1
represents the area of the region

= {( ) | 1 2, 4 3 4}, the top quarter portion of a
ring (annulus).

3 4

4

2

1
=

3 4

4

2

1

=
3 4

4
1
2

2 2

1
= 3

4 4
· 1
2
(4 1) =

2
· 3
2
= 3

4

6. The integral
2

2 sin

0
represents the area of the region = {( ) | 1 2 sin , 2 }. Since

= 2 sin 2 = 2 sin 2 + 2 = 2

2 + ( 1)2 = 1, is the portion in the second quadrant of a disk of

radius 1 with center (0 1).

2

2 sin

0
=

2
1
2

2 =2 sin

=0
=

2
2 sin2

=
2
2 · 1

2
(1 cos 2 ) = 1

2
sin 2

2

= 0
2
+ 0 =

2

7. The half disk can be described in polar coordinates as = {( ) | 0 5, 0 }. Then
2 =

0

5

0
( cos )2( sin ) =

0
cos2 sin

5

0
4

= 1
3
cos3

0
1
5

5 5

0
= 1

3
( 1 1) · 625 = 1250

3

8. The region is 1
8
of a disk, as shown in the figure, and can be described by = {( ) | 0 2, 4 2}. Thus

(2 ) =
2

4

2

0
(2 cos sin )

=
2

4
(2 cos sin )

2

0
2

= 2 sin + cos
2

4
1
3

3 2

0

= (2 + 0 2 2
2 )

8
3
= 16

3 4 2

9. sin( 2 + 2) =
2

0

3

1
sin( 2) =

2

0

3

1
sin( 2)

=
2

0
1
2 cos(

2)
3

1

=
2

1
2
(cos 9 cos 1) =

4
(cos 1 cos 9)

10.
2

2 + 2
=

2

0

( sin )2

2
=

2

0

sin2

=
2

0
1
2 (1 cos 2 ) = 1

2
1
2 sin 2

2

0
1
2

2

= 1
2
(2 0 0) 1

2
2 2 =

2
( 2 2)
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536 ¤ CHAPTER 15 MULTIPLE INTEGRALS

11.
2 2

=
2

2

2

0

2

=
2

2

2

0

2

=
2

2
1
2

2 2

0
= 1

2
( 4 0) = 2 (1

4)

12. cos 2 + 2 =
2

0

2

0
cos 2 =

2

0

2

0
cos . For the second integral, integrate by parts with

= , = cos . Then cos 2 + 2 =
2

0
[ sin + cos ]20 = 2 (2 sin 2 + cos 2 1).

13. is the region shown in the figure, and can be described

by = {( ) | 0 4 1 2}. Thus

arctan( ) =
4

0

2

1
arctan(tan ) since = tan .

Also, arctan(tan ) = for 0 4, so the integral becomes

4

0

2

1
=

4

0

2

1
= 1

2
2 4

0
1
2

2 2

1
=

2

32
· 3
2
= 3

64
2.

14. =

2 + 2 4
0, 0

( 1)2 + 2 1
0

=
2

0

2

0
2 cos

2

0

2 cos

0
2 cos

=
2

0
1
3 (8 cos )

2

0
1
3 (8 cos

4 )

= 8
3

8
12
cos3 sin + 3

2
( + sin cos )

2

0

= 8
3

2
3
0 + 3

2 2
= 16 3

6

15. One loop is given by the region

= {( ) | 6 6, 0 cos 3 }, so the area is

=
6

6

cos 3

0

=
6

6

1

2
2

=cos 3

=0

=
6

6

1

2
cos2 3 = 2

6

0

1

2

1 + cos 6

2

=
1

2
+
1

6
sin 6

6

0

=
12

16. By symmetry, the area of the region is 4 times the area of the region in the first quadrant enclosed by the cardiod

= 1 cos (see the figure). Here = {( ) | 0 1 cos 0 2}, so the total area is

4 ( ) = 4 = 4
2

0

1 cos

0
= 4

2

0
1
2

2 =1 cos

=0

= 2
2

0
(1 cos )2 = 2

2

0
(1 2 cos + cos2 )

= 2
2

0
1 2 cos + 1

2
(1 + cos 2 )

= 2 2 sin + 1
2
+ 1

4
sin 2

2

0

= 2
2

2 +
4
= 3

2
4
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SECTION 16.7 SURFACE INTEGRALS 1121

6. ,
is the cone with parametric equations , 

, , , 

7. , is the helicoid with vector equation
, , 

8. ,
is the surface with vector equation

,

9. ,
is the part of the plane that lies above the

rectangle

10. ,
is the part of the plane that lies in the first

octant

11. ,
is the triangular region with vertices , , 

and

12. ,
is the surface , , 

13. ,
is the part of the cone that lies between the

planes and 

14. ,
is the surface , , 

15. ,
is the part of the paraboloid that lies inside the

cylinder

16. ,
is the part of the sphere that lies 

inside the cylinder and above the -plane

17. ,
is the hemisphere ,

18. ,
is the boundary of the region enclosed by the cylinder

and the planes and 

19. ,
is the part of the cylinder that lies between the

planes and in the first octant

20. ,
is the part of the cylinder between the planes

and , together with its top and bottom disks

21–32 Evaluate the surface integral for the given vector
field and the oriented surface . In other words, find the flux of
across . For closed surfaces, use the positive (outward) orientation.

21. ,
is the parallelogram of Exercise 5 with upward orientation

xx
S
xyz dS

S x � u cos v
y � u sin v z � u 0 � u � 1 0 � v � ��2

xx
S
y dS S

r�u, v� � �u cos v, u sin v, v � 0 � u � 1 0 � v � �

xx
S

�x 2 � y 2� dS
S
r�u, v� � �2uv, u 2 � v2, u 2 � v2 � u 2 � v2 � 1

xxS x 2yz dS
S z � 1 � 2x � 3y

�0, 3� � �0, 2�

xxS xz dS
S

xx
S
x dS

S

2x � 2y � z � 4

�1, 0, 0� �0, �2, 0�
�0, 0, 4�

xxS y dS

0 � y � 10 � x � 1z � 2
3 �x 3�2 � y 3�2 �S

xxS x 2z2 dS
z2 � x 2 � y 2S

z � 3z � 1

xxS z dS
0 � z � 10 � y � 1x � y � 2z 2S

xxS y dS
y � x 2 � z2S

x 2 � z2 � 4

xxS y2 dS
x 2 � y2 � z2 � 4S

xyx 2 � y2 � 1

xxS �x 2z � y 2z� dS
z � 0x 2 � y 2 � z2 � 4S

xxS xz dS
S

x � y � 5x � 0y2 � z2 � 9

xxS �z � x 2 y� dS
y2 � z2 � 1S

x � 3x � 0

xxS �x 2 � y 2 � z2 � dS
x 2 � y2 � 9S

z � 2z � 0

xxS F � dS
FSF

S

S
F�x, y, z� � ze xy i � 3ze xy j � xy k

22. ,
is the helicoid of Exercise 7 with upward orientation

23. ,  is the part of the 
para boloid that lies above the square

, and has upward orientation

24. ,
is the part of the cone between the planes

and with downward orientation

25. ,
is the part of the sphere in the first octant,

with orientation toward the origin

26. ,
is the hemisphere , , oriented in the

direction of the positive -axis

27. ,
consists of the paraboloid , , 

and the disk , 

28. ,  is the surface ,
, , with upward orientation

29. ,
is the cube with vertices 

30. ,  is the boundary of the region
enclosed by the cylinder and the planes 
and

31. ,  is the boundary of the solid
half-cylinder , 

32. ,
is the surface of the tetrahedron with vertices ,

, , and 

33. Evaluate correct to four decimal places,
where is the surface , , .

34. Find the exact value of , where is the surface
, , .

35. Find the value of correct to four decimal places,
where is the part of the paraboloid that
lies above the -plane.

36. Find the flux of 

across the part of the cylinder that lies above 
the -plane and between the planes and with
upward orientation. Illustrate by using a computer algebra sys-
tem to draw the cylinder and the vector field on the same
screen.

37. Find a formula for similar to Formula 10 for the case
where is given by and is the unit normal that
points toward the left.

S
F�x, y, z� � z i � y j � x k

F�x, y, z� � xy i � yz j � zx k S
z � 4 � x 2 � y 2

0 � x � 1, 0 � y � 1

F�x, y, z� � �x i � y j � z 3 k
S z � sx 2 � y 2

z � 1

F�x, y, z� � x i � z j � y k
S x 2 � y 2 � z 2 � 4

F�x, y, z� � xz i � x j � y k
S x 2 � y 2 � z 2 � 25 y � 0

y

F�x, y, z� � y j � z k
S y � x 2 � z2 0 � y � 1

x 2 � z2 � 1 y � 1

F�x, y, z� � xy i � 4x 2 j � yz k S z � xe y

0 � x � 1 0 � y � 1

F�x, y, z� � x i � 2y j � 3z k
S ��1, �1, �1�

F�x, y, z� � x i � y j � 5 k S
x 2 � z2 � 1 y � 0

x � y � 2

F�x, y, z� � x 2 i � y 2 j � z2 k S
0 � z � s1 � y 2 0 � x � 2

F�x, y, z� � y i � �z � y� j � x k
S �0, 0, 0�
�1, 0, 0� �0, 1, 0� �0, 0, 1�

CAS xxS �x 2 � y 2 � z2� dS
S z � xe y 0 � x � 1 0 � y � 1

CAS xxS x 2 yz dS S
z � xy 0 � x � 1 0 � y � 1

CAS xxS x 2 y 2z2 dS
S z � 3 � 2x 2 � y 2

xy

CAS

F�x, y, z� � sin�xyz� i � x 2 y j � z2e x�5 k

4y 2 � z2 � 4
xy x � �2 x � 2

z � 3

xxS F � dS
ny � h�x, z�S
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674 ¤ CHAPTER 16 VECTOR CALCULUS

2. Each quarter-cylinder has surface area 1
4
[2 (1)(2)] = and the top and bottom disks have surface area (1)2 = . We can

take (0 0 1) as a sample point in the top disk, (0 0 1) in the bottom disk, and (±1 0 0), (0 ±1 0) in the four

quarter-cylinders. Then ( ) can be approximated by the Riemann sum

(1 0 0)( ) + ( 1 0 0)( ) + (0 1 0) ( ) + (0 1 0)( ) + (0 0 1)( ) + (0 0 1)( )

= (2 + 2 + 3 + 3 + 4 + 4) = 18 56 5.

3. We can use the - and -planes to divide into four patches of equal size, each with surface area equal to 1
8

the surface

area of a sphere with radius 50, so = 1
8 (4) 50

2
= 25 . Then (±3 ±4 5) are sample points in the four patches,

and using a Riemann sum as in Definition 1, we have

( ) (3 4 5) + (3 4 5) + ( 3 4 5) + ( 3 4 5)

= (7 + 8 + 9 + 12)(25 ) = 900 2827

4. On the surface, ( ) = 2 + 2 + 2 = (2) = 5. So since the area of a sphere is 4 2,

( ) = (2) = 5 = 5[4 (2)2] = 80 .

5. r( ) = ( + ) i + ( ) j + (1 + 2 + )k, 0 2, 0 1 and

r × r = (i+ j+ 2k)× (i j+ k) = 3 i+ j 2k |r × r | = 32 + 12 + ( 2)2 = 14. Then by Formula 2,

( + + ) = ( + + + 1 + 2 + ) |r × r | =
1

0

2

0
(4 + + 1) · 14

= 14
1

0
2 2 + +

=2

=0
= 14

1

0
(2 + 10) = 14 2 + 10

1

0
= 11 14

6. r( ) = cos i + sin j + k, 0 1, 0 2 and

r × r = (cos i+ sin j+ k)× ( sin i+ cos j) = cos i sin j+ k

|r × r | = 2 cos2 + 2 sin2 + 2 = 2 2 = 2 [since 0]. Then by Formula 2,

= ( cos )( sin )( ) |r × r | =
1

0

2

0
( 3 sin cos ) · 2

= 2
1

0
4 2

0
sin cos = 2 1

5
5 1

0
1
2
sin2

2

0
= 2 · 1

5
· 1
2
= 1

10
2

7. r( ) = h cos sin i, 0 1, 0 and

r × r = hcos sin 0i × h sin cos 1i = hsin cos i

|r × r | = sin2 + cos2 + 2 = 2 + 1. Then

= ( sin ) |r × r | =
1

0 0
( sin ) · 2 + 1 =

1

0
2 + 1

0
sin

= 1
3
( 2 + 1)3 2

1

0
[ cos ]0 =

1
3
(23 2 1) · 2 = 2

3
(2 2 1)

8. r( ) = 2 2 2 2 + 2 , 2 + 2 1 and

r × r = h2 2 2 i × h2 2 2 i = 8 4 2 4 2 4 2 4 2 , so

|r × r |= (8 )2 + (4 2 4 2)2 + ( 4 2 4 2)2 = 64 2 2 + 32 4 + 32 4

= 32( 2 + 2)2 = 4 2( 2 + 2)
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SECTION 16.7 SURFACE INTEGRALS ¤ 675

Then

( 2 + 2) = (2 )2 + ( 2 2)2 |r × r | = (4 2 2 + 4 2 2 2 + 4) · 4 2( 2 + 2)

= 4 2 ( 4 + 2 2 2 + 4) ( 2 + 2) = 4 2 ( 2 + 2)3 = 4 2
2

0

1

0
( 2)3

= 4 2
2

0

1

0
7 = 4 2 [ ]20

1
8

8 1

0
= 4 2 · 2 · 1

8
= 2

9. = 1 + 2 + 3 so = 2 and = 3. Then by Formula 4,

2 = 2
2

+
2

+ 1 =
3

0

2

0
2 (1 + 2 + 3 ) 4 + 9 + 1

= 14
3

0

2

0
( 2 + 2 3 + 3 2 2) = 14

3

0
1
2

2 2 + 3 2 + 2 3 =2

=0

= 14
3

0
(10 2 + 4 3) = 14 10

3
3 + 4 3

0
= 171 14

10. is the part of the plane = 4 2 2 over the region = {( ) | 0 2 0 2 }. Thus

= (4 2 2 ) ( 2)2 + ( 2)2 + 1 = 3
2

0

2

0
4 2 2 2

= 3
2

0
4 2 2 2 =2

=0
= 3

2

0
4 (2 ) 2 2(2 ) (2 )2

= 3
2

0
3 4 2 + 4 = 3 1

4
4 4

3
3 + 2 2 2

0
= 3 4 32

3
+ 8 = 4

11. An equation of the plane through the points (1 0 0), (0 2 0), and (0 0 4) is 4 2 + = 4, so is the region in the

plane = 4 4 + 2 over = {( ) | 0 1 2 2 0}. Thus by Formula 4,

= ( 4)2 + (2)2 + 1 = 21
1

0

0

2 2
= 21

1

0
[ ] =0=2 2

= 21
1

0
( 2 2 + 2 ) = 21 2

3
3 + 2 1

0
= 21 2

3
+ 1 = 21

3

12. = 2
3 (

3 2 + 3 2) and

= ( )
2
+

2
+ 1 =

1

0

1

0
+ + 1

=
1

0
2
3 ( + + 1)3 2

=1

=0
=

1

0
2
3 ( + 2)3 2 ( + 1)3 2

Substituting = + 2 in the first term and = + 1 in the second, we have

= 2
3

3

2
( 2) 3 2 2

3

2

1
( 1) 3 2 = 2

3
2
7

7 2 4
5

5 2
3

2

2
3

2
7
7 2 2

5
5 2

2

1

= 2
3

2
7
(37 2 27 2) 4

5
(35 2 25 2) 2

7
(27 2 1) + 2

5
(25 2 1)

= 2
3

18
35

3 + 8
35

2 4
35

= 4
105

9 3 + 4 2 2

13. is the portion of the cone 2 = 2 + 2 for 1 3, or equivalently, is the part of the surface = 2 + 2 over the

region = ( ) | 1 2 + 2 9 . Thus
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676 ¤ CHAPTER 16 VECTOR CALCULUS

2 2 = 2( 2 + 2)
2 + 2

2

+
2 + 2

2

+ 1

= 2( 2 + 2)
2 + 2

2 + 2
+ 1 = 2 2( 2 + 2) = 2

2

0

3

1

( cos )2( 2)

= 2
2

0
cos2

3

1
5 = 2 1

2
+ 1

4
sin 2

2

0
1
6

6 3

1
= 2 ( ) · 1

6
(36 1) =

364 2

3

14. Using and as parameters, we have r( ) = ( + 2 2) i+ j+ k, 0 1, 0 1.

Then r × r = (i+ j)× (4 i+ k) = i j 4 k and |r × r | = 2 + 16 2. Thus

=
1

0

1

0
2 + 16 2 =

1

0
2 + 16 2 = 1

32
· 2
3
(2 + 16 2)3 2

1

0
= 1

48
(183 2 23 2) = 13

12
2.

15. Using and as parameters, we have r( ) = i+ ( 2 + 2) j+ k, 2 + 2 4. Then

r × r = (i+ 2 j)× (2 j+ k) = 2 i j+ 2 k and |r × r | = 4 2 + 1 + 4 2 = 1 + 4( 2 + 2). Thus

=
2+ 2 4

( 2 + 2) 1 + 4( 2 + 2) =
2

0

2

0
2 1 + 4 2 =

2

0

2

0
2 1 + 4 2

= 2
2

0
2 1 + 4 2 let = 1 + 4 2 2 = 1

4 ( 1) and 1
8 =

= 2
17

1
1
4 ( 1) · 18 = 1

16

17

1
( 3 2 1 2)

= 1
16

2
5

5 2 2
3

3 2
17

1
= 1

16
2
5
(17)5 2 2

3
(17)3 2 2

5
+ 2

3
=
60

391 17 + 1

16. The sphere intersects the cylinder in the circle 2 + 2 = 1, = 3, so is the portion of the sphere where 3.

Using spherical coordinates to parametrize the sphere we have r( ) = 2 sin cos i+ 2 sin sin j+ 2cos k, and

|r × r | = 4 sin (see Example 16.6.10). The portion where 3 corresponds to 0
6

, 0 2 so

2 =
2

0

6

0
(2 sin sin )2(4 sin ) = 16

2

0
sin2

6

0
sin3

= 16 1
2

1
4
sin 2

2

0
1
3
cos3 cos

6

0
= 16( ) 3

8
3
2

1
3
+ 1 = 32

3
6 3

17. Using spherical coordinates and Example 16.6.10 we have r( ) = 2 sin cos i+ 2 sin sin j+ 2cos k and

|r × r | = 4 sin . Then ( 2 + 2 ) =
2

0

2

0
(4 sin2 )(2 cos )(4 sin ) = 16 sin4

2

0
= 16 .

18. Here consists of three surfaces: 1, the lateral surface of the cylinder; 2, the front formed by the plane + = 5;

and the back, 3, in the plane = 0.

On 1: the surface is given by r( ) = i+ 3 cos j+ 3 sin k, 0 2 , and 0 5

0 5 3 cos . Then r × r = 3cos j 3 sin k and |r × r | = 9cos2 + 9 sin2 = 3, so

1
=

2

0

5 3 cos

0
(3 sin )(3) = 9

2

0
1
2

2 =5 3 cos

=0
sin

= 9
2

2

0
(5 3 cos )2 sin = 9

2
1
9
(5 3 cos )3

2

0
= 0
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SECTION 16.7 SURFACE INTEGRALS ¤ 677

On 2: r( ) = (5 ) i+ j+ k and |r × r | = |i+ j| = 2, where 2 + 2 9 and

2
=

2 + 2 9

(5 ) 2 = 2
2

0

3

0
(5 cos )( sin )

= 2
2

0

3

0
(5 2 3 cos )(sin ) = 2

2

0
5
3

3 1
4

4 cos
=3

=0
sin

= 2
2

0
45 81

4
cos sin = 2 4

81
· 1
2
45 81

4
cos

2 2

0
= 0

On 3: = 0 so
3

= 0. Hence = 0 + 0 + 0 = 0.

19. is given by r( ) = i + cos j + sin k, 0 3, 0 2. Then

r × r = i× ( sin j+ cos k) = cos j sin k and |r × r | = cos2 + sin2 = 1, so

( + 2 ) =
2

0

3

0
(sin + 2 cos )(1) =

2

0
(3 sin + 9 cos )

= [ 3 cos + 9 sin ] 2
0 = 0 + 9 + 3 0 = 12

20. Let 1 be the lateral surface, 2 the top disk, and 3 the bottom disk.

On 1: r( ) = 3 cos i+ 3 sin j+ k, 0 2 , 0 2, |r × r | = 3,

1
( 2 + 2 + 2) =

2

0

2

0
(9 + 2) 3 = 2 (54 + 8) = 124 .

On 2: r( ) = cos i+ sin j+ 2k, 0 3, 0 2 , |r × r | = ,

2
( 2 + 2 + 2) =

2

0

3

0
( 2 + 4) = 2 81

4 + 18 = 153
2 .

On 3: r( ) = cos i+ sin j, 0 3, 0 2 , |r × r | = ,

3
( 2 + 2 + 2) =

2

0

3

0
( 2 + 0) = 2 81

4
= 81

2
.

Hence 2 + 2 + 2 = 124 + 153
2

+ 81
2

= 241 .

21. From Exercise 5, r( ) = ( + ) i+ ( ) j+ (1 + 2 + )k, 0 2, 0 1, and r × r = 3 i+ j 2k.

Then

F(r( )) = (1 + 2 + ) ( + )( ) i 3(1 + 2 + ) ( + )( ) j+ ( + )( )k

= (1 + 2 + )
2 2

i 3(1 + 2 + )
2 2

j+ ( 2 2)k

Because the -component of r × r is negative we use (r × r ) in Formula 9 for the upward orientation:

F · S = F · ( (r × r )) =
1

0

2

0
3(1 + 2 + )

2 2
+ 3(1 + 2 + )

2 2
+ 2( 2 2)

=
1

0

2

0
2( 2 2) = 2

1

0
1
3

3 2 =2

=0
= 2

1

0
8
3 2 2

= 2 8
3

2
3

3 1

0
= 2 8

3
2
3
= 4

22. r( ) = h cos sin i, 0 1, 0 and

r × r = hcos sin 0i × h sin cos 1i = hsin cos i. Here F(r( )) = i+ sin j+ cos k and,
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678 ¤ CHAPTER 16 VECTOR CALCULUS

by Formula 9,

F · S= F · (r × r ) =
1

0 0
( sin sin cos + 2 cos )

=
1

0
sin cos 1

2
sin2 + 2 sin

=

=0
=

1

0
= ]10 =

23. F( ) = i+ j+ k, = ( ) = 4 2 2, and is the square [0 1]× [0 1], so by Equation 10

F · S= [ ( 2 ) ( 2 ) + ] =
1

0

1

0
[2 2 + 2 2(4 2 2) + (4 2 2)]

=
1

0
1
3

2 + 11
3

3 + 34
15

= 713
180

24. F( ) = i j+ 3 k, = ( ) = 2 + 2, and is the annular region ( ) | 1 2 + 2 9 . Since

has downward orientation, we have

F · S= ( )
2 + 2

( )
2 + 2

+ 3

=
2 + 2

2 + 2
+ 2 + 2

3

=
2

0

3

1

2

+ 3

=
2

0

3

1
( 2 + 4) = [ ]20

1
3

3 + 1
5

5 3

1

= 2 9 + 243
5

1
3

1
5
= 1712

15

25. F( ) = i j + k, = ( ) = 4 2 2 and is the quarter disk

( ) 0 2 0 4 2 . has downward orientation, so by Formula 10,

F · S = · 1
2 (4

2 2) 1 2( 2 ) ( ) · 12 (4 2 2) 1 2( 2 ) +

=
2

4 2 2
4 2 2 ·

4 2 2
+

= 2(4 ( 2 + 2)) 1 2 =
2

0

2

0
( cos )2(4 2) 1 2

=
2

0
cos2

2

0
3(4 2) 1 2 let = 4 2 2 = 4 and 1

2
=

=
2

0
1
2 +

1
2 cos 2

0

4
1
2 (4 )( ) 1 2

= 1
2
+ 1

4
sin 2

2

0
1
2
8 2

3
3 2

0

4
=

4
1
2

16 + 16
3
= 4

3

26. F( ) = i+ j+ k

Using spherical coordinates, is given by = 5 sin cos , = 5 sin sin , = 5 cos , 0 ,

0 . F(r( )) = (5 sin cos )(5 cos ) i + (5 sin cos ) j+ (5 sin sin )k and

r × r = 25 sin2 cos i+ 25 sin2 sin j+ 25 cos sin k, so

F(r( )) · (r × r ) = 625 sin3 cos cos2 + 125 sin3 cos sin + 125 sin2 cos sin
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SECTION 16.7 SURFACE INTEGRALS ¤ 679

Then
F · S = [F(r( )) · (r × r )]

=
0 0

(625 sin3 cos cos2 + 125 sin3 cos sin + 125 sin2 cos sin )

= 125
0
5 sin3 cos 1

2
+ 1

4
sin 2 + sin3 1

2
sin2 + sin2 cos ( cos )

=

=0

= 125
0

5
2
sin3 cos + 2 sin2 cos = 125 5

2
· 1
4
sin4 + 2 · 1

3
sin3

0
= 0

27. Let 1 be the paraboloid = 2 + 2, 0 1 and 2 the disk 2 + 2 1, = 1. Since is a closed

surface, we use the outward orientation.

On 1: F(r( )) = ( 2 + 2) j k and r × r = 2 i j+ 2 k (since the j-component must be negative on 1). Then

1
F · S=

2 + 2 1

[ ( 2 + 2) 2 2] =
2

0

1

0
( 2 + 2 2 sin2 )

=
2

0

1

0
3(1 + 2 sin2 ) =

2

0
(1 + 1 cos 2 )

1

0
3

= 2 1
2 sin 2

2

0
1
4

4 1

0
= 4 · 14 =

On 2: F(r( )) = j k and r × r = j. Then
2
F · S =

2 + 2 1

(1) = .

Hence F · S = + = 0.

28. F( ) = i+ 4 2 j+ k, = ( ) = , and is the square [0 1]× [0 1], so by Equation 10

F · S= [ ( ) 4 2( ) + ] =
1

0

1

0
( 4 3 + )

=
1

0
4 3 =1

=0
= ( 1)

1

0
( 4 3) = 1

29. Here consists of the six faces of the cube as labeled in the figure. On 1:

F = i+ 2 j+ 3 k, r × r = i and
1
F · S = 1

1

1

1
= 4;

2: F = i+ 2 j+ 3 k, r × r = j and
2
F · S = 1

1

1

1
2 = 8;

3: F = i+ 2 j+ 3k, r × r = k and
3
F · S = 1

1

1

1
3 = 12;

4: F = i+ 2 j+ 3 k, r × r = i and
4
F · S = 4;

5: F = i 2 j+ 3 k, r × r = j and
5
F · S = 8;

6: F = i + 2 j 3k, r × r = k and
6
F · S = 1

1

1

1
3 = 12.

Hence F · S =
6

=1

F · S = 48.

30. Here consists of three surfaces: 1, the lateral surface of the cylinder; 2, the front formed by the plane + = 2; and the

back, 3, in the plane = 0.

On 1: F(r( )) = sin i+ j+ 5k and r × r = sin i+ cos k

1
F · S= 2

0

2 sin

0
(sin2 + 5cos )

=
2

0
(2 sin2 + 10 cos sin3 5 sin cos ) = 2
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1082 CHAPTER 16 VECTOR CALCULUS

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

1. The figure shows a curve and a contour map of a function
whose gradient is continuous. Find .

2. A table of values of a function with continuous gradient is
given. Find , where has parametric equations

3–10 Determine whether or not is a conservative vector field. 
If it is, find a function such that .

3.

4.

5.

6.

7.

8. ,

C f
x

C
� f � dr

y

x0

10

20

30
40
50
60

C

f
xC � f � dr C

x � t 2 � 1 y � t 3 � t 0 � t � 1

1

3

8

6

5

2

4

7

9

x
y

0

1

2

0 1 2

F
f F � � f

F�x, y� � �2x � 3y� i � ��3x � 4y � 8� j

F�x, y� � e x sin y i � e x cos y j

F�x, y� � e x cos y i � e x sin y j

F�x, y� � �3x 2 � 2y 2� i � �4xy � 3� j

F�x, y� � �ye x � sin y� i � �e x � x cos y� j

F�x, y� � �2xy � y�2� i � �x 2 � 2xy�3� j y � 0

9.

10.

11. The figure shows the vector field and
three curves that start at (1, 2) and end at (3, 2).
(a) Explain why has the same value for all three

curves.
(b) What is this common value?

12–18 (a) Find a function such that and (b) use 
part (a) to evaluate along the given curve .

12. ,
is the arc of the parabola from to 

13. ,

: ,  

14. ,
,

15. ,
is the line segment from to 

F�x, y� � �ln y � 2xy 3� i � �3x 2y 2 � x�y� j

F�x, y� � �xy cosh xy � sinh xy� i � �x 2 cosh xy � j

F�x, y� � �2xy, x 2 �

x
C

F � dr

y

x0 3

3

2

1

21

f F � ∇ f
xC F � dr C

F�x, y� � x 2 i � y 2 j
C y � 2x 2 ��1, 2� �2, 8�

F�x, y� � xy 2 i � x 2y j

C r�t� � � t � sin 1
2� t, t � cos 1

2� t � 0 � t � 1

F�x, y� � �1 � xy�e xy i � x 2e xy j
C: r�t� � cos t i � 2 sin t j 0 � t � ��2

F�x, y, z� � yz i � xz j � �xy � 2z� k
C �1, 0, �2� �4, 6, 3�

16.3 Exercises

Comparing this equation with Equation 16, we see that

which says that if an object moves from one point to another point under the influence
of a conservative force field, then the sum of its potential energy and its kinetic energy
remains constant. This is called the Law of Conservation of Energy and it is the reason
the vector field is called conservative.

P�A� � K�A� � P�B� � K�B�

A B
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS 1083

16. ,
: , , ,  

17. ,
: ,  

18. ,
: ,  

19–20 Show that the line integral is independent of path and eval-
uate the integral.
19. ,

is any path from to 

20. ,
is any path from to 

21. Suppose you’re asked to determine the curve that requires the
least work for a force field to move a particle from one
point to another point. You decide to check first whether is
conservative, and indeed it turns out that it is. How would
you reply to the request?

22. Suppose an experiment determines that the amount of work
required for a force field to move a particle from the point

to the point along a curve is 1.2 J and the
work done by in moving the particle along another curve 

between the same two points is 1.4 J. What can you say
about ? Why?

23–24 Find the work done by the force field in moving an
object from to .
23. ;  , 

24. ;  , 

25–26 Is the vector field shown in the figure conservative?
Explain.
25. 26.

27. If , use a plot to guess
whether is conservative. Then determine whether your
guess is correct.

C r�t� � �t 2 � 1� i � �t 2 � 1� j � �t 2 � 2t� k 0 � t � 2

F�x, y, z� � sin y i � �x cos y � cos z� j � y sin z k
C r�t� � sin t i � t j � 2t k 0 � t � ��2

F�x, y, z� � �y2z � 2xz2� i � 2xyz j � �xy 2 � 2x 2z� k
C x � st y � t � 1 z � t 2 0 � t � 1

F�x, y, z� � yze xz i � e xz j � xye xz k

xC 2xe�y dx � �2y � x 2e�y� dy
�2, 1��1, 0�C

xC sin y dx � �x cos y � sin y� dy
�1, ���2, 0�C

F
F

F
C1�5, �3��1, 2�

F
C2

F

F
QP

Q�2, 4�P�1, 1�F�x, y� � 2y 3�2 i � 3xsy j

Q�2, 0�P�0, 1�F�x, y� � e�y i � xe�y j

y

x

y

x

F�x, y� � sin y i � �1 � x cos y� jCAS

F

28. Let , where . Find curves
and that are not closed and satisfy the equation.

(a) (b)

29. Show that if the vector field is conser-
vative and , , have continuous first-order partial deriva-
tives, then

30. Use Exercise 29 to show that the line integral
is not independent of path.

31–34 Determine whether or not the given set is (a) open, 
(b) connected, and (c) simply-connected.
31. 32.

33.

34.

35. Let .

(a) Show that .
(b) Show that is not independent of path. 

[Hint: Compute and , where 
and are the upper and lower halves of the circle

from to .] Does this contradict
Theorem 6?

36. (a) Suppose that is an inverse square force field, that is,

for some constant , where . Find the
work done by in moving an object from a point
along a path to a point in terms of the distances and

from these points to the origin.
(b) An example of an inverse square field is the gravita-

 tional field discussed in Example 4
in Section 16.1. Use part (a) to find the work done by 
the gravitational field when the earth moves from 
aphelion (at a maximum distance of km 
from the sun) to perihelion (at a minimum distance of

km). (Use the values kg,
kg, and 

(c) Another example of an inverse square field is the elec tric
force field discussed in Example 5 in
Section 16.1. Suppose that an electron with a charge of

C is located at the origin. A positive unit
charge is positioned a distance m from the elec tron
and moves to a position half that distance from the elec-
tron. Use part (a) to find the work done by the electric
force field. (Use the value .)

F � � f f �x, y� � sin�x � 2y� C1

C2

yC1

F � dr � 0 yC2

F � dr � 1

F � P i � Q j � R k
P Q R

�P
�y �

�Q
�x

�P
�z

�
�R
�x

�Q
�z

�
�R
�y

xC y dx � x dy � xyz dz

��x, y� � 0 	 y 	 3	 ��x, y� � 1 	 � x � 	 2	

��x, y� � 1 � x 2 � y 2 � 4, y 
 0	

��x, y� � �x, y� � �2, 3�	

F�x, y� �
�y i � x j

x 2 � y 2

�P��y � �Q��x
xC F � dr
xC1

F � dr xC2
F � dr C1

C2

x 2 � y 2 � 1 �1, 0� ��1, 0�

F

F�r� �
cr

� r �3

c r � x i � y j � z k
F P1

P2 d1

d2

F � ��mMG �r�� r �3

1.52 � 108

1.47 � 108 m � 5.97 � 1024

M � 1.99 � 1030 G � 6.67 � 10�11 N�m2�kg2.�

F � 
qQr�� r �3

�1.6 � 10�19

10�12
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS ¤ 637

49. Let r( ) = h ( ) ( ) ( )i and v = h 1 2 3i. Then

v · r = h 1 2 3i · h 0( ) 0( ) 0( )i = [ 1
0( ) + 2

0( ) + 3
0( )]

= 1 ( ) + 2 ( ) + 3 ( ) = [ 1 ( ) + 2 ( ) + 3 ( )] [ 1 ( ) + 2 ( ) + 3 ( )]

= 1 [ ( ) ( )] + 2 [ ( ) ( )] + 3 [ ( ) ( )]

= h 1 2 3i · h ( ) ( ) ( ) ( ) ( ) ( )i
= h 1 2 3i · [h ( ) ( ) ( )i h ( ) ( ) ( )i] = v · [r( ) r( )]

50. If r( ) = h ( ) ( ) ( )i then

r · r = h ( ) ( ) ( )i · h 0( ) 0( ) 0( )i = [ ( ) 0( ) + ( ) 0( ) + ( ) 0( )]

= 1
2
[ ( )]2 + 1

2
[ ( )]2 + 1

2
[ ( )]2

= 1
2

[ ( )]2 + [ ( )]2 + [ ( )]2 [ ( )]2 + [ ( )]2 + [ ( )]2

= 1
2
|r( )|2 |r( )|2

51. The work done in moving the object is F · r = F ·T . We can approximate this integral by dividing into

7 segments of equal length = 2 and approximating F ·T, that is, the tangential component of force, at a point ( ) on

each segment. Since is composed of straight line segments, F ·T is the scalar projection of each force vector onto .

If we choose ( ) to be the point on the segment closest to the origin, then the work done is

F ·T
7

=1

[F( ) ·T( )] = [2 + 2 + 2 + 2 + 1 + 1 + 1](2) = 22. Thus, we estimate the work done to

be approximately 22 J.

52. Use the orientation pictured in the figure. Then sinceB is tangent to any circle that lies in the plane perpendicular to the wire,

B = |B|T where T is the unit tangent to the circle : = cos , = sin . ThusB = |B| h sin cos i. Then

B · r = 2

0
|B| h sin cos i · h sin cos i =

2

0
|B| = 2 |B|. (Note that |B| here is the magnitude

of the field at a distance from the wire’s center.) But by Ampere’s Law B · r = 0 . Hence |B| = 0 (2 ).

16.3 The Fundamental Theorem for Line Integrals

1. appears to be a smooth curve, and since is continuous, we know is differentiable. Then Theorem 2 says that the value

of · r is simply the difference of the values of at the terminal and initial points of . From the graph, this is

50 10 = 40.

2. is represented by the vector function r( ) = ( 2 + 1) i+ ( 3 + ) j, 0 1, so r0( ) = 2 i+ (3 2 + 1) j. Since

3 2 + 1 6= 0, we have r0( ) 6= 0, thus is a smooth curve. is continuous, and hence is differentiable, so by Theorem 2

we have · r = (r(1)) (r(0)) = (2 2) (1 0) = 9 3 = 6.
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638 ¤ CHAPTER 16 VECTOR CALCULUS

3. (2 3 ) = 3 = ( 3 + 4 8) and the domain of F is R2 which is open and simply-connected, so by

Theorem 6 F is conservative. Thus, there exists a function such that = F, that is, ( ) = 2 3 and

( ) = 3 + 4 8. But ( ) = 2 3 implies ( ) = 2 3 + ( ) and differentiating both sides of this

equation with respect to gives ( ) = 3 + 0( ). Thus 3 + 4 8 = 3 + 0( ) so 0( ) = 4 8 and

( ) = 2 2 8 + where is a constant. Hence ( ) = 2 3 + 2 2 8 + is a potential function for F.

4. ( sin ) = cos = ( cos ) and the domain of F is R2. Hence F is conservative so there exists a function

such that = F. Then ( ) = sin implies ( ) = sin + ( ) and ( ) = cos + 0( ). But

( ) = cos so 0( ) = 0 ( ) = . Then ( ) = sin + is a potential function for F.

5. ( cos ) = sin , ( sin ) = sin . Since these are not equal, F is not conservative.

6. (3 2 2 2) = 4 , (4 + 3) = 4 . Since these are not equal, F is not conservative.

7. ( + sin ) = + cos = ( + cos ) and the domain of F is R2. Hence F is conservative so there

exists a function such that = F. Then ( ) = + sin implies ( ) = + sin + ( ) and

( ) = + cos + 0( ). But ( ) = + cos so ( ) = and ( ) = + sin + is a potential

function for F.

8. (2 + 2) = 2 2 3 = ( 2 2 3) and the domain of F is {( ) | 0} which is open and
simply-connected. Hence F is conservative, so there exists a function such that = F. Then ( ) = 2 + 2

implies ( ) = 2 + 2 + ( ) and ( ) = 2 2 3 + 0( ). But ( ) = 2 2 3 so
0( ) = 0 ( ) = . Then ( ) = 2 + 2 + is a potential function for F.

9. (ln + 2 3) = 1 + 6 2 = (3 2 2 + ) and the domain of F is {( ) | 0} which is open and simply
connected. Hence F is conservative so there exists a function such that = F. Then ( ) = ln + 2 3 implies

( ) = ln + 2 3 + ( ) and ( ) = + 3 2 2 + 0( ). But ( ) = 3 2 2 + so 0( ) = 0

( ) = and ( ) = ln + 2 3 + is a potential function for F.

10. ( cosh + sinh )
= 2 sinh + cosh + cosh = 2 sinh + 2 cosh =

( 2 cosh )

and the domain of F is R2. Thus F is conservative, so there exists a function such that = F. Then

( ) = cosh + sinh implies ( ) = sinh + ( ) ( ) = 2 cosh + 0( ). But

( ) = 2 cosh so ( ) = and ( ) = sinh + is a potential function for F.

11. (a) F has continuous first-order partial derivatives and 2 = 2 = ( 2) on R2, which is open and simply-connected.

Thus, F is conservative by Theorem 6. Then we know that the line integral of F is independent of path; in particular, the

value of F · r depends only on the endpoints of . Since all three curves have the same initial and terminal points,

F · r will have the same value for each curve.
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS ¤ 639

(b) We first find a potential function , so that = F. We know ( ) = 2 and ( ) = 2. Integrating

( ) with respect to , we have ( ) = 2 + ( ). Differentiating both sides with respect to gives

( ) = 2 + 0( ), so we must have 2 + 0( ) = 2 0( ) = 0 ( ) = , a constant.

Thus ( ) = 2 + . All three curves start at (1 2) and end at (3 2), so by Theorem 2,

F · r = (3 2) (1 2) = 18 2 = 16 for each curve.

12. (a) ( ) = 2 implies ( ) = 1
3

3 + ( ) and ( ) = 0 + 0( ). But ( ) = 2 so

0( ) = 2 ( ) = 1
3

3 + . We can take = 0, so ( ) = 1
3

3 + 1
3

3.

(b) F · r = (2 8) ( 1 2) = 8
3
+ 512

3
1
3
+ 8

3
= 171.

13. (a) ( ) = 2 implies ( ) = 1
2

2 2 + ( ) and ( ) = 2 + 0( ). But ( ) = 2 so 0( ) = 0

( ) = , a constant. We can take = 0, so ( ) = 1
2

2 2.

(b) The initial point of is r(0) = (0 1) and the terminal point is r(1) = (2 1), so

F · r = (2 1) (0 1) = 2 0 = 2.

14. (a) ( ) = 2 implies ( ) = + ( ) ( ) = + + 0( ) = (1 + ) + 0( ). But

( ) = (1 + ) so 0( ) = 0 ( ) = . We can take = 0, so ( ) = .

(b) The initial point of is r(0) = (1 0) and the terminal point is r( 2) = (0 2), so

F · r = (0 2) (1 0) = 0 0 = 1.

15. (a) ( ) = implies ( ) = + ( ) and so ( ) = + ( ). But ( ) = so

( ) = 0 ( ) = ( ). Thus ( ) = + ( ) and ( ) = + 0( ). But

( ) = + 2 , so 0( ) = 2 ( ) = 2 + . Hence ( ) = + 2 (taking = 0).

(b) F · r = (4 6 3) (1 0 2) = 81 4 = 77.

16. (a) ( ) = 2 + 2 2 implies ( ) = 2 + 2 2 + ( ) and so ( ) = 2 + ( ). But

( ) = 2 so ( ) = 0 ( ) = ( ). Thus ( ) = 2 + 2 2 + ( ) and

( ) = 2 + 2 2 + 0( ). But ( ) = 2 + 2 2 , so 0( ) = 0 ( ) = . Hence

( ) = 2 + 2 2 (taking = 0).

(b) = 0 corresponds to the point (0 1 0) and = 1 corresponds to (1 2 1), so

F · r = (1 2 1) (0 1 0) = 5 0 = 5.

17. (a) ( ) = implies ( ) = + ( ) and so ( ) = + ( ). But ( ) = so

( ) = 0 ( ) = ( ). Thus ( ) = + ( ) and ( ) = + 0( ). But

( ) = , so 0( ) = 0 ( ) = . Hence ( ) = (taking = 0).

(b) r(0) = h1 1 0i, r(2) = h5 3 0i so F · r = (5 3 0) (1 1 0) = 3 0 + 0 = 4.
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640 ¤ CHAPTER 16 VECTOR CALCULUS

18. (a) ( ) = sin implies ( ) = sin + ( ) and so ( ) = cos + ( ). But

( ) = cos + cos so ( ) = cos ( ) = cos + ( ). Thus

( ) = sin + cos + ( ) and ( ) = sin + 0( ). But ( ) = sin , so 0( ) = 0

( ) = . Hence ( ) = sin + cos (taking = 0).

(b) r(0) = h0 0 0i, r( 2) = h1 2 i so F · r = (1 2 ) (0 0 0) = 1
2

0 = 1
2
.

19. The functions 2 and 2 2 have continuous first-order derivatives on R2 and

2 = 2 = 2 2 , so F( ) = 2 i+ 2 2 j is a conservative vector field by

Theorem 6 and hence the line integral is independent of path. Thus a potential function exists, and ( ) = 2

implies ( ) = 2 + ( ) and ( ) = 2 + 0( ). But ( ) = 2 2 so
0( ) = 2 ( ) = 2 + . We can take = 0, so ( ) = 2 + 2. Then

2 + (2 2 ) = (2 1) (1 0) = 4 1 + 1 1 = 4 .

20. The functions sin and cos sin have continuous first-order derivatives on R2 and

(sin ) = cos = ( cos sin ), so F( ) = sin i+ ( cos sin ) j is a conservative vector field by

Theorem 6 and hence the line integral is independent of path. Thus a potential function exists, and ( ) = sin implies

( ) = sin + ( ) and ( ) = cos + 0( ). But ( ) = cos sin so
0( ) = sin ( ) = cos + . We can take = 0, so ( ) = sin + cos . Then

sin + ( cos sin ) = (1 ) (2 0) = 1 1 = 2.

21. If F is conservative, then F · r is independent of path. This means that the work done along all piecewise-smooth curves
that have the described initial and terminal points is the same. Your reply: It doesn’t matter which curve is chosen.

22. The curves 1 and 2 connect the same two points but
1
F · r 6=

2
F · r. Thus F is not independent of path, and

therefore is not conservative.

23. F( ) = 2 3 2 i+ 3 j, = F · r. Since (2 3 2) = 3 = (3 ) , there exists a function

such that = F. In fact, ( ) = 2 3 2 ( ) = 2 3 2 + ( ) ( ) = 3 1 2 + 0( ). But

( ) = 3 so 0( ) = 0 or ( ) = . We can take = 0 ( ) = 2 3 2. Thus

= F · r = (2 4) (1 1) = 2(2)(8) 2(1) = 30.

24. F( ) = i j, = F · r. Since = = , there exists a function such that

= F. In fact, = ( ) = + ( ) = + 0( ) 0( ) = 0, so we can take

( ) = as a potential function for F. Thus = F · r = (2 0) (0 1) = 2 0 = 2.
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SECTION 14.8 LAGRANGE MULTIPLIERS 959

For functions of two variables the method of Lagrange multipliers is similar to the
method just described. To find the extreme values of subject to the constraint

, we look for values of , , and such that

This amounts to solving three equations in three unknowns:

Our first illustration of Lagrange’s method is to reconsider the problem given in Exam-
ple 6 in Section 14.7.

A rectangular box without a lid is to be made from 12 m of cardboard.
Find the maximum volume of such a box.

SOLUTION As in Example 6 in Section 14.7, we let , , and be the length, width, and
height, respectively, of the box in meters. Then we wish to maximize

subject to the constraint

Using the method of Lagrange multipliers, we look for values of , , , and such that
and . This gives the equations

which become

There are no general rules for solving systems of equations. Sometimes some ingenuity is
required. In the present example you might notice that if we multiply by by ,
and by , then the left sides of these equations will be identical. Doing this, we have

We observe that because would imply from , ,
and and this would contradict . Therefore, from and , we have

f �x, y�
t�x, y� � k x y �

� f �x, y� � � �t�x, y� and t�x, y� � k

fx � �tx fy � �ty t�x, y� � k

2

x y z

V � xyz

t�x, y, z� � 2xz � 2yz � xy � 12

x y z �
�V � � �t t�x, y, z� � 12

Vx � �tx
Vy � �ty
Vz � �tz

2xz � 2yz � xy � 12

v EXAMPLE 1

2 yz � ��2z � y�

3 xz � ��2z � x�

4 xy � ��2x � 2y�

5 2xz � 2yz � xy � 12

x, y
z

6 xyz � ��2xz � xy�

7 xyz � ��2yz � xy�

8 xyz � ��2xz � 2yz�

� � 0 � � 0 yz � xz � xy � 0

2 3
4

2 3
4 5 6 7

2xz � xy � 2yz � xy

Another method for solving the system of equa-

tions (2 –5) is to solve each of Equations 2, 3,

and 4 for and then to equate the resulting

expressions.

�
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960 CHAPTER 14 PARTIAL DERIVATIVES

which gives . But (since would give ), so . From
and we have

which gives and so (since ) . If we now put in ,
we get

Since , , and are all positive, we therefore have and so and . This
agrees with our answer in Section 14.7.

Find the extreme values of the function on the 
circle .
SOLUTION We are asked for the extreme values of subject to the constraint

. Using Lagrange multipliers, we solve the equations
and , which can be written as

or as

From we have or . If , then gives . If , then
from , so then gives . Therefore has possible extreme values 

at the points , , , and . Evaluating at these four points, we
find that

Therefore the maximum value of on the circle is and the
minimum value is . Checking with Figure 2, we see that these values look
reasonable.

Find the extreme values of on the disk .
SOLUTION According to the procedure in (14.7.9), we compare the values of at the criti-
cal points with values at the points on the boundary. Since and , the only
critical point is . We compare the value of at that point with the extreme values on
the boundary from Example 2:

Therefore the maximum value of on the disk is and the
minimum value is .

Find the points on the sphere that are closest to and 
farthest from the point .
SOLUTION The distance from a point to the point is

2yz � xy � 2xz � 2yz

2xz � xy x � 0 y � 2z x � y � 2z

4z2 � 4z2 � 4z2 � 12

x y z z � 1 x � 2 y � 2

8

5

f �x, y� � x 2 � 2y 2

x 2 � y 2 � 1
f

t�x, y� � x 2 � y 2 � 1 � f � � �t
t�x, y� � 1

fx � �tx fy � �ty t�x, y� � 1

9 2x � 2x�

10 4y � 2y�

11 x 2 � y 2 � 1

x � 0 � � 1 x � 0 y � �1 � � 1
y � 0 x � �1 f

�0, 1� �0, �1� �1, 0� ��1, 0� f

f �0, 1� � 2 f �0, �1� � 2 f �1, 0� � 1 f ��1, 0� � 1

f x 2 � y 2 � 1 f �0, �1� � 2
f ��1, 0� � 1

v EXAMPLE 2

9
10

11
11

f �x, y� � x 2 � 2y 2 x 2 � y 2 � 1
f

fx � 2x fy � 4y
�0, 0� f

f �0, 0� � 0 f ��1, 0� � 1 f �0, �1� � 2

f x 2 � y 2 � 1 f �0, �1� � 2
f �0, 0� � 0

x 2 � y 2 � z2 � 4
�3, 1, �1�

�x, y, z� �3, 1, �1�

EXAMPLE 3

EXAMPLE 4

7x � yV � 0z � 0z � 0xz � yz

d � s�x � 3�2 � �y � 1�2 � �z � 1�2

FIGURE 2

z

x
y

 ≈+¥=1

z=≈+2¥

C

In geometric terms, Example 2 asks for 

the highest and lowest points on the curve 

in Figure 2 that lie on the paraboloid

and directly above the con-

straint circle .x2 � y2 � 1
z � x2 � 2y2
C

The geometry behind the use of Lagrange 

multipliers in Example 2 is shown in Figure 3.

The extreme values of 

correspond to the level curves that touch the 

circle .x 2 � y 2 � 1

f �x, y� � x 2 � 2y 2

FIGURE 3

x

y

0

≈+2¥=1

≈+2¥=2
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SECTION 14.8 LAGRANGE MULTIPLIERS 961

but the algebra is simpler if we instead maximize and minimize the square of the 
distance:

The constraint is that the point lies on the sphere, that is,

According to the method of Lagrange multipliers, we solve , . This gives

The simplest way to solve these equations is to solve for , , and in terms of from
, , and , and then substitute these values into . From we have

[Note that because is impossible from .] Similarly, and give

Therefore, from , we have

which gives , , so

These values of then give the corresponding points :

and

It’s easy to see that has a smaller value at the first of these points, so the closest point
is and the farthest is .

Two Constraints
Suppose now that we want to find the maximum and minimum values of a function
subject to two constraints (side conditions) of the form and .
Geometrically, this means that we are looking for the extreme values of when is
restricted to lie on the curve of intersection of the level surfaces and

. (See Figure 5.) Suppose has such an extreme value at a point .

d 2 � f �x, y, z� � �x � 3�2 � �y � 1�2 � �z � 1�2

�x, y, z�

t�x, y, z� � x 2 � y 2 � z2 � 4

� f � � �t t � 4

12 2�x � 3� � 2x�

13 2�y � 1� � 2y�

14 2�z � 1� � 2z�

15 x 2 � y 2 � z2 � 4

x y z �

x � 3 � x� or x�1 � �� � 3 or x �
3

1 � �

1 � � � 0 � � 1

y �
1

1 � �
z � �

1
1 � �

32

�1 � ��2 �
12

�1 � ��2 �
��1�2

�1 � ��2 � 4

�1 � ��2 � 11
4 1 � � � �s11�2

� � 1 �
s11

2

� �x, y, z�

� 6
s11 , 2

s11 , �
2
s11� ��

6
s11 , �

2
s11 , 2

s11�
f

(6�s11, 2�s11, �2�s11) (�6�s11, �2�s11, 2�s11)

12 13 14 15 12

12 13 14

15

f �x, y, z�
t�x, y, z� � k h�x, y, z� � c

�x, y, z�f
t�x, y, z� � kC

P�x0, y0, z0�fh�x, y, z� � c

Figure 4 shows the sphere and the nearest point

in Example 4. Can you see how to find the

coordinates of without using calculus?P
P

FIGURE 4

z

y
x

(3, 1, _1)

P

FIGURE 5

h=c

g=k

C

±g

P ±h

g

P ±h

±f
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is a rational function of three variables and so is continuous at every point in except
where . In other words, it is discontinuous on the sphere with center the
origin and radius 1.

If we use the vector notation introduced at the end of Section 14.1, then we can write the
definitions of a limit for functions of two or three variables in a single compact form as 
follows.

If is defined on a subset D of , then means that for
every number there is a corresponding number such that

if  and  then

Notice that if , then and , and is just the definition of a limit for
functions of a single variable. For the case , we have , , 
and , so becomes Definition 1. If , then

, , and becomes the definition of a limit of a function of three
variables. In each case the definition of continuity can be written as

� 3

x 2 � y 2 � z2 � 1

f �n lim xl a f �x� � L
� � 0 � � 0

x � D 0 � � x � a � � � � f �x� � L � � �

n � 1 x � x a � a
n � 2 x � �x, y � a � �a, b �

�x � a � � s�x � a� 2 � �y � b� 2 n � 3
x � �x, y, z � a � �a, b, c �

lim
xl a

f �x� � f �a�

5

5

5
5

SECTION 14.2 LIMITS AND CONTINUITY 899

1. Suppose that . What can you say 
about the value of ? What if is continuous?

2. Explain why each function is continuous or discontinuous.
(a) The outdoor temperature as a function of longitude, 

latitude, and time
(b) Elevation (height above sea level) as a function of

longitude, latitude, and time
(c) The cost of a taxi ride as a function of distance traveled 

and time

3–4 Use a table of numerical values of for near the
origin to make a conjecture about the value of the limit of
as . Then explain why your guess is correct.

3. 4.

5–22 Find the limit, if it exists, or show that the limit does 
not exist.

5. 6.

7. 8.

9. 10.

lim�x, y�l �3, 1� f �x, y� � 6
ff �3, 1�

�x, y�f �x, y�

�x, y� l �0, 0�
f �x, y�

f �x, y� �
2xy

x 2 � 2y 2f �x, y� �
x 2y 3 � x 3y 2 � 5

2 � xy

lim
�x, y�l �1, 2�

�5x 3 � x 2y 2� lim
�x, y�l �1, �1�

e�xy cos�x � y�

lim
�x, y�l �1, 0�

ln� 1 � y 2

x 2 � xy�lim
�x, y�l �2, 1�

4 � xy

x 2 � 3y 2

lim
�x, y�l �0, 0�

x 4 � 4y 2

x 2 � 2y 2 lim
�x, y�l �0, 0�

5y 4 cos2 x

x 4 � y 4

11. 12.

13. 14.

15. 16.

17. 18.

19.

20.

21.

22.

; 23–24 Use a computer graph of the function to explain why the
limit does not exist.

23. 24.

lim
�x, y�l �0, 0�

xy

sx 2 � y 2
lim

�x, y�l �0, 0�

x 4 � y 4

x 2 � y 2

lim
�x, y�l �0, 0�

x 2ye y

x 4 � 4y 2 lim
�x, y�l �0, 0�

x 2 sin2 y

x 2 � 2y 2

lim
�x, y�l �0, 0�

x 2 � y 2

sx 2 � y 2 � 1 � 1
lim

�x, y�l �0, 0�

xy 4

x 2 � y 8

lim
�x, y, z�l ��, 0, 1	3�

ey2

tan�xz�

lim
�x, y, z�l �0, 0, 0�

xy � yz

x 2 � y 2 � z2

lim
�x, y, z�l �0, 0, 0�

xy � yz 2 � xz2

x 2 � y 2 � z 4

lim
�x, y, z�l �0, 0, 0�

yz

x 2 � 4y 2 � 9z2

lim
�x, y�l �0, 0�

2x 2 � 3xy � 4y 2

3x 2 � 5y 2 lim
�x, y�l �0, 0�

xy 3

x 2 � y6

lim
�x, y�l �1, 0�

xy � y

�x � 1�2 � y 2lim
�x, y�l �0, 0�

y 2 sin2 x

x 4 � y 4

14.2 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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392 ¤ CHAPTER 14 PARTIAL DERIVATIVES

4. We make a table of values of

( ) =
2

2 + 2 2
for a set of ( )

points near the origin.

It appears from the table that the values of ( ) are not approaching a single value as ( ) approaches the origin. For

verification, if we first approach (0 0) along the -axis, we have ( 0) = 0, so ( ) 0. But if we approach (0 0) along

the line = , ( ) =
2 2

2 + 2 2
=
2

3
( 6= 0), so ( ) 2

3 . Since approaches different values along different paths

to the origin, this limit does not exist.

5. ( ) = 5 3 2 2 is a polynomial, and hence continuous, so lim
( ) (1 2)

( ) = (1 2) = 5(1)3 (1)2(2)2 = 1.

6. is a polynomial and therefore continuous. Since is a continuous function, the composition is also continuous.

Similarly, + is a polynomial and cos is a continuous function, so the composition cos( + ) is continuous.

The product of continuous functions is continuous, so ( ) = cos( + ) is a continuous function and

lim
( ) (1 1)

( ) = (1 1) = (1)( 1) cos(1 + ( 1)) = 1 cos 0 = .

7. ( ) =
4
2 + 3 2

is a rational function and hence continuous on its domain.

(2 1) is in the domain of , so is continuous there and lim
( ) (2 1)

( ) = (2 1) =
4 (2)(1)

(2)2 + 3(1)2
=
2

7
.

8. 1 + 2

2 +
is a rational function and hence continuous on its domain, which includes (1 0). ln is a continuous function for

0, so the composition ( ) = ln
1 + 2

2 +
is continuous wherever 1 +

2

2 +
0. In particular, is continuous at

(1 0) and so lim
( ) (1 0)

( ) = (1 0) = ln
1 + 02

12 + 1 · 0 = ln
1

1
= 0.

9. ( ) = ( 4 4 2) ( 2 + 2 2). First approach (0 0) along the -axis. Then ( 0) = 4 2 = 2 for 6= 0, so

( ) 0. Now approach (0 0) along the -axis. For 6= 0, (0 ) = 4 2 2 2 = 2, so ( ) 2. Since has

two different limits along two different lines, the limit does not exist.
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SECTION 14.2 LIMITS AND CONTINUITY ¤ 393

10. ( ) = (5 4 cos2 ) ( 4 + 4). First approach (0 0) along the -axis. Then ( 0) = 0 4 = 0 for 6= 0, so

( ) 0. Next approach (0 0) along the -axis. For 6= 0, (0 ) = 5 4 4 = 5, so ( ) 5. Since has two

different limits along two different lines, the limit does not exist.

11. ( ) = ( 2 sin2 ) ( 4 + 4). On the -axis, ( 0) = 0 for 6= 0, so ( ) 0 as ( ) (0 0) along the

-axis. Approaching (0 0) along the line = , ( ) =
2 sin2

4 + 4
=
sin2

2 2
=
1

2

sin
2

for 6= 0 and

lim
0

sin
= 1, so ( ) 1

2 . Since has two different limits along two different lines, the limit does not exist.

12. ( ) =
( 1)2 + 2

. On the -axis, ( 0) = 0 ( 1)2 = 0 for 6= 1, so ( ) 0 as ( ) (1 0) along

the -axis. Approaching (1 0) along the line = 1, ( 1) =
( 1) ( 1)

( 1)2 + ( 1)2
=
( 1)2

2( 1)2
=
1

2
for 6= 1,

so ( ) 1
2
along this line. Thus the limit does not exist.

13. ( ) =
2 + 2

. We can see that the limit along any line through (0 0) is 0, as well as along other paths through

(0 0) such as = 2 and = 2. So we suspect that the limit exists and equals 0; we use the Squeeze Theorem to prove our

assertion. 0
2 + 2

| | since | | 2 + 2, and | | 0 as ( ) (0 0). So lim
( ) (0 0)

( ) = 0.

14. ( ) =
4 4

2 + 2
=
( 2 + 2)( 2 2)

2 + 2
= 2 2 for ( ) 6= (0 0). Thus the limit as ( ) (0 0) is 0.

15. Let ( ) =
2

4 + 4 2
. Then ( 0) = 0 for 6= 0, so ( ) 0 as ( ) (0 0) along the -axis. Approaching

(0 0) along the -axis or the line = also gives a limit of 0. But 2 =
2 2 2

4 + 4( 2)2
=

4 2

5 4
=

2

5
for 6= 0, so

( ) 0 5 = 1
5 as ( ) (0 0) along the parabola = 2. Thus the limit doesn’t exist.

16. We can use the Squeeze Theorem to show that lim
( ) (0 0)

2 sin2

2 + 2 2
= 0:

0
2 sin2

2 + 2 2
sin2 since

2

2 + 2 2
1, and sin2 0 as ( ) (0 0), so lim

( ) (0 0)

2 sin2

2 + 2 2
= 0.

17. lim
( ) (0 0)

2 + 2

2 + 2 + 1 1
= lim

( ) (0 0)

2 + 2

2 + 2 + 1 1
·

2 + 2 + 1 + 1
2 + 2 + 1 + 1

= lim
( ) (0 0)

2 + 2 2 + 2 + 1 + 1

2 + 2
= lim

( ) (0 0)

2 + 2 + 1 + 1 = 2
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1. Line Integrals Of Vector Fields - Practice Problems Solutions

1. Evaluate  where  and  is the line segment from  to .

Here is a quick sketch of  with the direction specified in the problem statement shown.

Next, we need to parameterize the curve.

∫
C

→F ⋅ d→r →F (x, y) = y2
→i + (3x − 6y) →j C (3, 7) (0, 12)

C

73



The derivative of the parameterization is,

Finally, the dot product of the vector field and the derivative of the parameterization.

Now all we need to do is evaluate the integral.

→r (t) = (1 − t) ⟨3, 7⟩ + t ⟨0, 12⟩ = ⟨3 − 3t, 7 + 5t⟩ 0 ≤ t ≤ 1

In order to evaluate this line integral we’ll need the dot product of the vector field (evaluated at the along the curve) and the derivative of the 
parameterization.

Here is the vector field evaluated along the curve (i.e. plug in x and y from the parameterization into the vector field).

→F (→r (t)) = (7 + 5t)
2
→i + (3 (3 − 3t) − 6 (7 + 5t)) →j = (7 + 5t)

2
→i + (−33 − 39t) →j

→r
′
(t) = ⟨−3, 5⟩

→F (→r (t)) ⋅ →r
′
(t) = −3(7 + 5t)

2
− 5 (33 + 39t)

∫
C

→F ⋅ d→r = ∫
1

0

−3(7 + 5t)2 − 5 (33 + 39t) dt

= [− (7 + 5t)3 − 165t − t2]∣
∣
∣

1

0

=
1

5

195

2
−

1079

2
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2 : Line Integrals Of Vector Fields - Practice Problems Solutions

2. Evaluate  where  and  is the portion of  that is in the 4th quadrant with the

counter clockwise rotation.

Here is a quick sketch of  with the direction specified in the problem statement shown.

Next, we need to parameterize the curve.

∫
C

→F ⋅ d→r →F (x, y) = (x + y) →i + (1 − x) →j C + = 1
x2

4

y2

9

C

→ (t) ⟨2 (t) 3 i (t)⟩ ≤ t ≤ 2
3
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The derivative of the parameterization is,

Finally, the dot product of the vector field and the derivative of the parameterization.

Make sure that you simplify the dot product with an eye towards doing the integral! In this case that meant using the double angle formula for 
sine to “simplify” the first term for the integral.

Now all we need to do is evaluate the integral.

r (t) = ⟨2 cos(t), 3 sin(t)⟩ π ≤ t ≤ 2π
2

In order to evaluate this line integral we’ll need the dot product of the vector field (evaluated at the along the curve) and the derivative of the 
parameterization.

Here is the vector field evaluated along the curve (i.e. plug in x and y from the parameterization into the vector field).

→F (→r (t)) = (2 cos(t) + 3 sin(t)) →i + (1 − 2 cos(t)) →j

→r
′
(t) = ⟨−2 sin(t), 3 cos(t)⟩

→F (→r (t)) ⋅ →r
′
(t) = (2 cos(t) + 3 sin(t)) (−2 sin(t)) + (1 − 2 cos(t)) (3 cos(t))

= −4 cos(t) sin(t) − 6sin2 (t) + 3 cos(t) − 6cos2 (t)

= −4 cos(t) sin(t) − 6 [sin2 (t) + cos2 (t)] + 3 cos(t)

= −2 sin(2t) + 3 cos(t) − 6

∫
C

→F ⋅ d→r = ∫
2π

π

−2 sin(2t) + 3 cos(t) − 6 dt

= [cos(2t) + 3 sin(t) − 6t]|2π
π

=

3

2

3

2

5 − 3π
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3 Line Integrals Of Vector Fields - Practice Problems Solutions

3. Evaluate  where  and  is the portion of  from  to .

Here is a quick sketch of  with the direction specified in the problem statement shown.

Next, we need to parameterize the curve.

∫
C

→F ⋅ d→r →F (x, y) = y2
→i + (x2 − 4) →j C y = (x − 1)2

x = 0 x = 3

C

→r (t) = ⟨t, (t − 1)2⟩ 0 ≤ t ≤ 3
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The derivative of the parameterization is,

Finally, the dot product of the vector field and the derivative of the parameterization.

Make sure that you simplify the dot product with an eye towards doing the integral!

Now all we need to do is evaluate the integral.

⟨ ⟩

In order to evaluate this line integral we’ll need the dot product of the vector field (evaluated at the along the curve) and the derivative of the 
parameterization.

Here is the vector field evaluated along the curve (i.e. plug in x and y from the parameterization into the vector field).

→F (→r (t)) = [(t − 1)2]
2
→i + ((t)2 − 4) →j = (t − 1)4

→i + (t2 − 4) →j

→r
′ (t) = ⟨1, 2 (t − 1)⟩

→F (→r (t)) ⋅ →r
′
(t) = (t − 1)4 (1) + (t2 − 4) (2t − 2)

= (t − 1)
4

+ 2t3 − 2t2 − 8t + 8

∫
C

→F ⋅ d→r = ∫
3

0

(t − 1)4 + 2t3 − 2t2 − 8t + 8 dt

= [ (t − 1)
5

+ t4 − t3 − 4t2 + 8t]∣
∣
∣

3

0

=
1

5

1

2

2

3

171

10
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Line Integrals - Part I - Practice Problems Solutions

1. Evaluate  where  is the line segment from  to .

Here is a quick sketch of  with the direction specified in the problem statement shown.

 since the limits in the integral must go from smaller to larger value.

∫
C

3x2 − 2y ds C (3, 6) (1, −1)

C

Now, with the specified direction we can see that x is decreasing as we move along the curve in the specified direction. This means that we 
can’t just determine the equation of the line and use that to work the problem. Using the equation of the line would require us to use increasing
x
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We could of course use the fact from the notes that relates the line integral with a specified direction and the line integral with the opposite
direction to allow us to use the equation of the line. However, for this problem let’s just work with problem without the fact to make sure we can
do that type of problem

So, we’ll need to parameterize this line and we know how to parameterize the equation of a line between two points. Here is the vector form of
the parameterization of the line.

We could also break this up into parameter form as follows.

Either form of the parameterization will work for the problem but we’ll use the vector form for the rest of this problem. 

We’ll need the magnitude of the derivative of the parameterization so let’s get that.

We’ll also need the integrand “evaluated” at the parameterization. Recall all this means is we replace the /  in the integrand with the /
from parameterization. Here is the integrand evaluated at the parameterization.

The line integral is then,

Note that we didn’t multiply out the first term in the integrand as we could do a quick substitution to do the integral.

→r (t) = (1 − t) ⟨3, 6⟩ + t ⟨1, −1⟩ = ⟨3 − 2t, 6 − 7t⟩ 0 ≤ t ≤ 1

x = 3 − 2t

y = 6 − 7t
0 ≤ t ≤ 1

→r
′
(t) = ⟨−2, −7⟩ ∥∥→r

′
(t)∥∥ = √(−2)

2
+ (−7)

2
= √53

x y x y

3x2 − 2y = 3(3 − 2t)2 − 2 (6 − 7t) = 3(3 − 2t)2 − 12 + 14t

∫
C

3x2 − 2y ds = ∫
1

0
(3(3 − 2t)2 − 12 + 14t)√53 dt

= √53[− (3 − 2t)
3

− 12t + 7t2]∣
∣
∣

1

0

=
1

2
8√53
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Section 5-2 : Line Integrals - Part I - Practice Problems Solutions

3. Evaluate  where  is the portion of  from  to 

Here is a quick sketch of  with the direction specified in the problem statement shown.

In this case we can just use the equation of the curve for the parameterization because the specified direction is going in the direction of
increasing  which will give us integral limits from smaller value to larger value as needed. Here is a parameterization for this curve.

We could also break this up into parameter form as follows.

∫
C

6x ds C y = x2 x = −1 x = 2. The direction of C is in the direction of increasing x.

C

x

→r (t) = ⟨t, t2⟩ − 1 ≤ t ≤ 2
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Either form of the parameterization will work for the problem but we’ll use the vector form for the rest of this problem. 

We’ll need the magnitude of the derivative of the parameterization so let’s get that.

We’ll also need the integrand “evaluated” at the parameterization. Recall all this means is we replace the /  in the integrand with the /
from parameterization. Here is the integrand evaluated at the parameterization.

The line integral is then,

x = t

y = t2
− 1 ≤ t ≤ 2

→r
′ (t) = ⟨1, 2t⟩ ∥∥→r

′ (t)∥∥ = √(1)2 + (2t)2 = √1 + 4t2

x y x y

6x = 6t

∫
C

6x ds = ∫
2

−1

6t√1 + 4t2 dt = (1 + 4t2) ∣
∣
∣

2

−1

=
1

2

3

2 (17 − 5 )1

2

3

2

3

2
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 Line Integrals - Part I - Practice Problems Solutions

6. Evaluate  where  is the portion of  from  to  followed by the line segment form  to  which in

turn is followed by the line segment from  to . See the sketch below for the direction.

To help with the problem let’s label each of the curves as follows,

∫
C

16y5 ds C x = y4 y = 0 y = 1 (1, 1) (1, −2)

(1, −2) (2, 0)
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Now let’s parameterize each of these curves.

 
 

For  we had to use the vector form for the line segment between two points instead of the equation for the line (which is much simpler of
course) because the direction was in the decreasing  direction and the limits on our integral must be from smaller to larger. We could have
used the fact from the notes that tells us how the line integrals for the two directions related to allow us to use the equation of the line if we’d
wanted to. We decided to do it this way just for the practice of dealing with the vector form for the line segment and it’s not all that difficult to
deal with the result and the limits are “nicer”.

Note as well that for  we could have solved for the equation of the line and used that because the direction is in the increasing  direction.
However, the vector form for the line segment between two points is just as easy to use so we used that instead.

Okay, we now need to compute the line integral along each of these curves. Unlike the first few problems in this section where we found the 
magnitude and the integrand prior to the integration step we’re just going to just straight into the integral and do all the work there.

Here is the integral along each of the curves.

C1 : →r (t) = ⟨t4, t⟩ 0 ≤ t ≤ 1

C2 : →r (t) = (1 − t) ⟨1, 1⟩ + t ⟨1, −2⟩ = ⟨1, 1 − 3t⟩ 0 ≤ t ≤ 1
C3 : →r (t) = (1 − t) ⟨1, −2⟩ + t ⟨2, 0⟩ = ⟨1 + t, 2t − 2⟩ 0 ≤ t ≤ 1

C2
y

C3 x

∫
C1

16y5 ds = ∫
1

0
16(t)

5 √(4t3)
2

+ (1)
2
dt = ∫

1

0
16t5 √16t6 + 1 dt

(16 6 1) ∣
∣
1

(17 1) 7 6770
1 3

2
1 3
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Okay to finish this problem out all we need to do is add up the line integrals over these curves to get the full line integral.

Note that we put parenthesis around the result of each individual line integral simply to illustrate where it came from and they aren’t needed in
general of course.

= (16t6 + 1) ∣
∣
∣0

= (17 − 1) = 7.6770
––––––––––––––––––––––––9

2

9
2

∫
C2

16y5 ds = ∫
1

0
16(1 − 3t)

5 √(0)
2

+ (−3)
2
dt = ∫

1

0
48(1 − 3t)

5
dt

= − (1 − 3t)6∣
∣
∣

1

0
= −168

––––––
8

3

∫
C3

16y5 ds = ∫
1

0
16(2t − 2)

5 √(1)
2

+ (2)
2
dt = ∫

1

0
16√5(2t − 2)

5
dt

= (2t − 2)
6∣
∣
∣

1

0

= − = −190.8111
–––––––––––––––––––––––––

4√5

3

256√5

3

∫
C

16y5 ds = ( (17 + 1)) + (−168) + (− ) =
1

9

3
2

256√5

3
−351.1341
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Line Integrals - Part II - Practice Problems Solutions

1. Evaluate  where  is the portion of  from  to .

Here is a quick sketch of  with the direction specified in the problem statement shown.

Next, we need to parameterize the curve.

∫
C

√1 + y dy C y = e
2x x = 0 x = 2

C

→r (t) = ⟨t, e
2t⟩ 0 ≤ t ≤ 2
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Now we need to evaluate the line integral. Be careful with this type line integral. Note that the differential, in this case, is  and not  as they
were in the previous section.

All we need to do is recall that  when we convert the line integral into a “standard” integral.

So, let’s evaluate the line integral. Just remember to “plug in” the parameterization into the integrand (i.e. replace the  and  in the integrand
with the  and  components of the parameterization) and to convert the differential properly.

Here is the line integral.

Note that, in this case, the integral ended up being a simple substitution.

dy ds

dy = y′ dt

x y
x y

∫
C

√1 + y dy = ∫
2

0

√1 + e
2t (2e

2t) dt

= [ (1 + e
2t) ]∣

∣
∣

2

0

=
2

3

3

2 [(1 + e
4) − 2 ] = 274.4897

2

3

3

2
3

2
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 Line Integrals - Part II - Practice Problems Solutions

2. Evaluate  where  is portion of  from  to .

Here is a quick sketch of  with the direction specified in the problem statement shown.

Next, we need to parameterize the curve.

∫
C

2y dx + (1 − x) dy C y = 1 − x3 x = −1 x = 2

C

→r (t) = ⟨t, 1 − t3⟩ − 1 ≤ t ≤ 2
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Now we need to evaluate the line integral. Be careful with this type of line integral. In this case we have both a  and a  in the integrand.
Recall that this is just a simplified notation for,

Then all we need to do is recall that  and  when we convert the line integral into a “standard” integral.

So, let’s evaluate the line integral. Just remember to “plug in” the parameterization into the integrand (i.e. replace the  and  in the integrand
with the  and  components of the parameterization) and to convert the differentials properly.

Here is the line integral.

Note that, in this case, we combined the two integrals into a single integral prior to actually evaluating the integral. This doesn’t need to be
done but can, on occasion, simplify the integrand and hence the evaluation of the integral.

dx dy

∫
C

2y dx + (1 − x) dy = ∫
C

2y dx + ∫
C

1 − x dy

dx = x′ dt dy = y′ dt

x y
x y

∫
C

2y dx + (1 − x) dy = ∫
C

2y dx + ∫
C

1 − x dy

= ∫
2

−1

2 (1 − t3) (1) dt + ∫
2

−1

(1 − t) (−3t2) dt

= ∫
2

−1

2 (1 − t3) dt − 3 ∫
2

−1

t2 − t3 dt

= ∫
2

−1

t3 − 3t2 + 2 dt

= [ t4 − t3 + 2t]∣
∣
∣

2

−1

=
1

4

3

4

92



Line Integrals - Part II - Practice Problems Solutions

4. Evaluate  where  is the right half of the circle of radius 2 with counter clockwise rotation followed by the line segment from 

 to . See the sketch below for the direction.

To help with the problem let’s label each of the curves as follows,

∫
C

1 + x
3
dx C

(0, 2) (−3, −4)
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Now let’s parameterize each of these curves.

 
 

C1 : →r (t) = ⟨2 cos(t), 2 sin(t)⟩ − π ≤ t ≤ π
1 1

C2 : r→  (t) = (1 − t) ⟨0, 2⟩  + t ⟨−3, −4
2

⟩  = ⟨−3t,
2

2 − 6t⟩  

Now we need to compute the line integral for each of the curves.

0 ≤ t ≤ 1

∫
C1

1 + x
3
dx = ∫

π

− π

[1 + (2 cos(t))3] (−2 sin(t)) dt

= ∫
π

− π

−2 sin(t) − 16cos3 (t) sin(t) dt

= (2 cos(t) + 4cos4 (t))∣∣
π

− π
= 0–

1
2

1
2

1
2

1
2

1
2

1

2

∫
C2

1 + x
3
dx = ∫

1

0

[1 + (−3t)
3] (−3) dt

= ∫
1

0

−3 + 81t3
dt

= (−3t + t
4)∣

∣
∣

1

0

=
––––

81

4

69

4
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Don’t forget to correctly deal with the differentials when converting the line integral into a “standard” integral.

Okay to finish this problem out all we need to do is add up the line integrals over these curves to get the full line integral.

Note that we put parenthesis around the result of each individual line integral simply to illustrate where it came from and they aren’t needed in
general of course.

∫
C

1 + x
3
dx = (0) + ( ) =

69

4

69

4

95



Line Integrals - Part II - Practice Problems Solutions

5. Evaluate  where  is the line segment from  to  followed by the portion of  from 

to  which in turn is followed by the line segment from  to . See the sketch below for the direction.

To help with the problem let’s label each of the curves as follows,

∫
C

2x2 dy − xy dx C (1, −5) (−2, −3) y = 1 − x2 x = −2

x = 2 (2, −3) (4, −3)
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Now let’s parameterize each of these curves.

 
 

Note that for  we had to use the vector form for the line segment between two points because the specified direction was in the decreasing 
 direction and so the equation of the line wouldn’t work since the limits of the line integral need to go from smaller to larger values.

We did just use the equation of the line for  since it was simple enough to do and the limits were also nice enough.

Now we need to compute the line integral for each of the curves.

C1 : →r (t) = (1 − t) ⟨1, −5⟩ + t ⟨−2, −3⟩ = ⟨1 − 3t, −5 + 2t⟩ 0 ≤ t ≤ 1
C2 : →r (t) = ⟨t, 1 − t2⟩ − 2 ≤ t ≤ 2

C3 : →r (t) = ⟨t, −3⟩ 2 ≤ t ≤ 4

C1
x

C3

∫ 2x2 dy − xy dx = ∫ 2x2 dy − ∫ xy dx
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∫
C1

∫
C1

∫
C1

= ∫
1

0

2(1 − 3t)
2

(2) dt − ∫
1

0

(1 − 3t) (−5 + 2t) (−3) dt

= ∫
1

0

4(1 − 3t)
2

− 3 (6t2 − 17t + 5) dt

= (− (1 − 3t)3 − 3(2t3 − t2 + 5t))∣
∣
∣

1

0

=
––––

4

9

17

2

17

2

∫
C2

2x2 dy − xy dx = ∫
C2

2x2 dy − ∫
C2

xy dx

= ∫
2

−2

2(t)
2

(−2t) dt − ∫
2

−2

(t) (1 − t2) (1) dt

= ∫
2

−2

−3t3 − t dt

= (− t4 − t2)∣
∣
∣

2

−2

= 0–
3

4

1

2

∫
C3

2x2 dy − xy dx = ∫
C3

2x2 dy − ∫
C2

xy dx

= ∫
4

2

2(t)
2

(0) dt − ∫
4

2

(t) (−3) (1) dt

= ∫
4

2

3t dt

= ( t2)∣
∣
∣

4

2

= 18–––
3

2

Don’t forget to correctly deal with the differentials when converting the line integral into a “standard” integral.

Also, don’t get excited when one of the differentials “evaluates” to zero as the first one did in the C3 integral. That will happen on occasion and 
is not something to get worried about when it does.
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Okay to finish this problem out all we need to do is add up the line integrals over these curves to get the full line integral.

Note that we put parenthesis around the result of each individual line integral simply to illustrate where it came from and they aren’t needed in
general of course.

∫
C

2x2 dy − xy dx = ( ) + (0) + (18) =
17

2

53

2
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Line Integrals - Part II - Practice Problems Solutions

6. Evaluate  for each of the following curves.

(a) is the portion of the circle of radius 6 in the 1st, 2nd and 3rd quadrant with clockwise rotation.

(b) is the line segment from  to .

(a) is the portion of the circle of radius 6 in the 1st, 2nd and 3rd quadrant with clockwise rotation.

Let’s start off with a quick sketch of the curve for this part of the problem.

Here is the parameterization for this curve.

∫
C

(x − y) dx − yx2 dy

C

C (0, −6) (6, 0)

C

C : →r (t) = ⟨6 cos(t), −6 sin(t)⟩ π ≤ t ≤ 2π
1
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Here is the line integral for this curve.

Don’t forget to correctly deal with the differentials when converting the line integral into a “standard” integral.

(b) is the line segment from  to . 

Let’s start off with a quick sketch of the curve for this part of the problem.

C r (t) ⟨6 cos(t), 6 s (t)⟩ π ≤ t ≤ π
2

∫
C

(x − y) dx − yx2 dy = ∫
C

(x − y) dx − ∫
C

yx2 dy

= ∫
2π

π

[6 cos(t) − (−6 sin(t))] (−6 sin(t)) dt

− ∫
2π

π

[(6 sin(t)) (6 cos(t))
2] (−6 cos(t)) dt

= ∫
2π

π

−36 cos(t) sin(t) − 36sin2 (t) − 1296 sin(t)cos3 (t) dt

= ∫
2π

π

−18 sin(2t) − 18 (1 − cos(2t)) − 1296 sin(t)cos3 (t) dt

= (9 cos(2t) − 18t + 9 sin(2t) + 324cos4 (t))∣∣
2π

π

=

1

2

1

2

1

2

1

2

1

2

342 − 27π = 257.1770

C (0, −6) (6, 0)

101



So, what we have in this part is a different curve that goes from  to . Despite the fact that this curve has the same starting and
ending point as the curve in the first part there is no reason to expect the line integral to have the same value. Therefore we’ll need to go
through the work and see what we get from the line integral.

We’ll need to parameterize the curve so let’s take care of that.

Note that we could have just found the equation of this curve but it seemed just as easy to just use the vector form of the line segment 
between two points.

Now all we need to do is compute the line integral.

So, as noted at the start of this part the value of the line integral was not the same as the value of the line integral in the first part despite the
same starting and ending points for the curve. Note that it is possible for two line integrals with the same starting and ending points to have
the same value but we can’t expect that to happen and so need to go through and do the work.

(0, −6) (6, 0)

C : →r (t) = (1 − t) ⟨0, −6⟩ + t ⟨6, 0⟩ = ⟨6t, −6 + 6t⟩ 0 ≤ t ≤ 1

∫
C

(x − y) dx − yx2 dy = ∫
C

(x − y) dx − ∫
C

yx2 dy

= ∫
1

0

[6t − (−6 + 6t)] (6) dt − ∫
1

0

[(−6 + 6t) (6t)
2] (6) dt

= ∫
1

0

36 + 1296t2 − 1296t3 dt

= (36t + 432t3 − 324t4)∣∣
1

0
= 144
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SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES 1037

1–2 Plot the point whose spherical coordinates are given. Then find
the rectangular coordinates of the point.

1. (a) (b)

2. (a) (b)

3–4 Change from rectangular to spherical coordinates.

3. (a) (b)

4. (a) (b)

5–6 Describe in words the surface whose equation is given.

5. 6.

7–8 Identify the surface whose equation is given.

7. 8.

�6, ��3, ��6� �3, ��2, 3��4�

�2, ��2, ��2� �4, ���4, ��3�

�0, �2, 0� (�1, 1, �s2 )

(1, 0, s3 ) (s3 , �1, 2s3 )

� � ��3 � � 3

� � sin � sin � � 2 �sin2� sin2� � cos2�� � 9

9–10 Write the equation in spherical coordinates.

9. (a) (b)

10. (a) (b)

11–14 Sketch the solid described by the given inequalities.

11. , ,

12. , ,

13. ,

14. ,

15. A solid lies above the cone and below the
sphere . Write a description of the solid in
terms of inequalities involving spherical coordinates.

16. (a) Find inequalities that describe a hollow ball with diameter
30 cm and thickness 0.5 cm. Explain how you have
positioned the coordinate system that you have chosen.

x 2 � 2x � y 2 � z 2 � 0 x � 2y � 3z � 1

2 � � � 4 0 � � � ��3 0 � � � �

1 � � � 2 0 � � � ��2 ��2 � � � 3��2

� � 1 3��4 � � � �

� � 2 � � csc �

z � sx 2 � y 2

x 2 � y 2 � z2 � z

x 2 � z2 � 9z2 � x 2 � y 2

15.9 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

Figure 11 shows how E is swept out if we integrate first with respect to , then , and
then . The volume of E is

� �
�

V�E� � yyy
E

dV � y2�

0
y��4

0
ycos �

0
�2 sin � d� d� d�

� y2�

0
d� y��4

0
sin �� �3

3 �
��0

��cos �

d�

�
2�

3 y
��4

0
sin � cos3� d� �

2�

3 ��
cos4�

4 �
0

��4

�
�

8

FIGURE 11
¨ varies from 0 to 2π.

z

yx

z

yx

∏ varies from 0 to cos ˙

while ˙ and ¨  are c onstant.

z

yx

˙ varies from 0 to π/4

 while ¨ is constant.

Visual 15.9 shows an animation of 
Figure 11.
TEC
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1038 CHAPTER 15 MULTIPLE INTEGRALS

(b) Suppose the ball is cut in half. Write inequalities that
describe one of the halves.

17–18 Sketch the solid whose volume is given by the integral 
and evaluate the integral.

17.

18.

19–20 Set up the triple integral of an arbitrary continuous function
in cylindrical or spherical coordinates over the solid

shown.
19. 20.

21–34 Use spherical coordinates.
21. Evaluate , where is the ball with 

center the origin and radius 5.

22. Evaluate , where is the solid
hemisphere , .

23. Evaluate , where lies between the spheres
and .

24. Evaluate , where is the solid hemisphere
, .

25. Evaluate , where is the portion of the unit
ball that lies in the first octant.

26. Evaluate , where lies between the spheres 
and and above the cone .

27. Find the volume of the part of the ball that lies between
the cones and .

28. Find the average distance from a point in a ball of radius to
its center.

29. (a) Find the volume of the solid that lies above the cone
and below the sphere .

(b) Find the centroid of the solid in part (a).

30. Find the volume of the solid that lies within the sphere
, above the -plane, and below the cone

.

31. (a) Find the centroid of the solid in Example 4.
(b) Find the moment of inertia about the -axis for this solid.

y��6

0 y
��2

0 y
3

0
�2 sin � d� d� d�

y2�

0 y
�

��2 y
2

1
�2 sin � d� d� d�

f �x, y, z�

z 

x 
y 

3 

2 

z 

x y 2 
1 

xxxB �x 2 � y 2 � z2 �2 dV B

xxxH �9 � x 2 � y 2 � dV H
x 2 � y 2 � z2 � 9 z 	 0

ExxxE �x 2 � y 2� dV
x 2 � y 2 � z 2 � 9x 2 � y 2 � z 2 � 4

ExxxE y 2 dV
y 	 0x 2 � y 2 � z2 � 9

ExxxE xex2�y2� z2 dV
x 2 � y 2 � z 2 � 1

ExxxE xyz dV
� � ��3� � 4� � 2

� � a
� � ��3� � ��6

a

� � 4 cos �� � ��3

xyx 2 � y 2 � z 2 � 4
z � sx 2 � y 2

z

32. Let be a solid hemisphere of radius whose density at any
point is proportional to its distance from the center of the base.
(a) Find the mass of .
(b) Find the center of mass of .
(c) Find the moment of inertia of about its axis.

33. (a) Find the centroid of a solid homogeneous hemisphere of
radius .

(b) Find the moment of inertia of the solid in part (a) about a
diameter of its base.

34. Find the mass and center of mass of a solid hemisphere of
radius if the density at any point is proportional to its 
distance from the base.

35–38 Use cylindrical or spherical coordinates, whichever seems
more appropriate.
35. Find the volume and centroid of the solid that lies 

above the cone and below the sphere
.

36. Find the volume of the smaller wedge cut from a sphere of
radius by two planes that intersect along a diameter at an
angle of .

37. Evaluate , where lies above the paraboloid 
and below the plane . Use either the

Table of Integrals (on Reference Pages 6–10) or a computer
algebra system to evaluate the integral.

38. (a) Find the volume enclosed by the torus .
(b) Use a computer to draw the torus.

39– 41 Evaluate the integral by changing to spherical coordinates.

39.

40.

41.

42. A model for the density of the earth’s atmosphere near its
surface is

where (the distance from the center of the earth) is mea-
sured in meters and is measured in kilograms per cubic
meter. If we take the surface of the earth to be a sphere with
radius 6370 km, then this model is a reasonable one for

. Use this model to estimate
the mass of the atmosphere between the ground and an altitude
of 5 km.

; 43. Use a graphing device to draw a silo consisting of a cylinder
with radius 3 and height 10 surmounted by a hemisphere.

H
H

H

a

a

E
z � sx 2 � y 2

x 2 � y 2 � z2 � 1

a
��6

ExxxE z dVCAS

z � 2yz � x 2 � y 2

CAS � � sin �

y1

0 y
s1�x 2

0 ys2�x 2�y 2

sx 2�y 2
xy dz dy dx

ya
�a y

sa 2�y 2

�sa 2�y 2 ysa 2�x 2�y 2

�sa 2�x 2�y 2 �x 2z � y 2z � z3� dz dx dy

y2

�2 y
s4�x 2

�s4�x 2 y2�s4�x 2�y 2

2�s4�x 2�y 2
�x 2 � y 2 � z 2�3�2 dz dy dx





 � 619.09 � 0.000097�

�



6.370 � 106 � � � 6.375 � 106

aH
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584 ¤ CHAPTER 15 MULTIPLE INTEGRALS

We split the region of integration where the outside boundary changes from the vertical line = 1 to the circle
2 + 2 = 2 or = 1. 1 is a right triangle, so cos = 1 . Thus, the boundary between 1 and 2 is = cos 1 1 in

polar coordinates, or = 2 1 in rectangular coordinates. Using rectangular coordinates for the region 1 and polar

coordinates for 2, we find the total volume of the solid to be

= 16
1

0

2 1

0

1 2 +
4

cos 1(1 ) 0

1 2 cos2

If 2, the cylinder 2 + 2 = 1 completely encloses the intersection of the other two cylinders, so the solid of

intersection of the three cylinders coincides with the intersection of 2 + 2 = 1 and 2 + 2 = 1 as illustrated in

Exercise 15.6.24. Its volume is = 16
1

0 0
1 2 .

15.9 Triple Integrals in Spherical Coordinates

1. (a) From Equations 1, = sin cos = 6 sin
6
cos

3
= 6 · 1

2
· 1
2
= 3

2
,

= sin sin = 6 sin
6
sin

3
= 6 · 1

2
· 3
2
= 3 3

2
, and

= cos = 6 cos
6
= 6 · 3

2
= 3 3, so the point is 3

2
3 3
2

3 3 in

rectangular coordinates.

(b) = 3 sin 3
4 cos 2 = 3 · 2

2 · 0 = 0,

= 3 sin 3
4
sin

2
= 3 · 2

2
· 1 = 3 2

2
, and

= 3 cos 3
4
= 3 2

2
= 3 2

2
, so the point is 0 3 2

2
3 2
2

in

rectangular coordinates.

2. (a) = 2 sin
2
cos

2
= 2 · 1 · 0 = 0, = 2 sin

2
sin

2
= 2 · 1 · 1 = 2,

= 2 cos
2
= 2 · 0 = 0 so the point is (0 2 0) in rectangular coordinates.

(b) = 4 sin
3
cos

4
= 4 · 3

2
· 2
2
= 6,

= 4 sin
3
sin

4
= 4 3

2
2
2

= 6,

= 4cos
3 = 4 · 12 = 2 so the point is 6 6 2 in rectangular

coordinates.
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SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ¤ 585

3. (a) From Equations 1 and 2, = 2 + 2 + 2 = 02 + ( 2)2 + 02 = 2, cos = =
0

2
= 0 =

2
, and

cos =
sin

=
0

2 sin( 2)
= 0 =

3

2
[since 0]. Thus spherical coordinates are 2

3

2 2
.

(b) = 1 + 1 + 2 = 2, cos = =
2

2
=
3

4
, and

cos =
sin

=
1

2 sin(3 4)
=

1

2 2 2
=

1

2
=
3

4
[since 0]. Thus spherical coordinates

are 2
3

4

3

4
.

4. (a) = 2 + 2 + 2 = 1 + 0 + 3 = 2, cos = =
3

2
=
6
, and cos =

sin
=

1

2 sin( 6)
= 1

= 0. Thus spherical coordinates are 2 0
6
.

(b) = 3 + 1 + 12 = 4, cos = =
2 3

4
=

3

2
=
6
, and cos =

sin
=

3

4 sin( 6)
=

3

2

=
11

6
[since 0]. Thus spherical coordinates are 4

11

6 6
.

5. Since =
3
, the surface is the top half of the right circular cone with vertex at the origin and axis the positive -axis.

6. Since = 3, 2 + 2 + 2 = 9 and the surface is a sphere with center the origin and radius 3.

7. = sin sin 2 = sin sin 2 + 2 + 2 = 2 + 2 + 1
4
+ 2 = 1

4

2 + ( 1
2
)2 + 2 = 1

4
. Therefore, the surface is a sphere of radius 1

2
centered at 0 1

2
0 .

8. 2 sin2 sin2 + cos2 = 9 ( sin sin )2 + ( cos )2 = 9 2 + 2 = 9. Thus the surface is a circular

cylinder of radius 3 with axis the -axis.

9. (a) = sin cos , = sin sin , and = cos , so the equation 2 = 2 + 2 becomes

( cos )2 = ( sin cos )2 + ( sin sin )2 or 2 cos2 = 2 sin2 . If 6= 0, this becomes cos2 = sin2 . ( = 0

corresponds to the origin which is included in the surface.) There are many equivalent equations in spherical coordinates,

such as tan2 = 1, 2 cos2 = 1, cos 2 = 0, or even =
4
, = 3

4
.

(b) 2 + 2 = 9 ( sin cos )2 + ( cos )2 = 9 2 sin2 cos2 + 2 cos2 = 9 or

2 sin2 cos2 + cos2 = 9.

10. (a) 2 2 + 2 + 2 = 0 ( 2 + 2 + 2) 2 = 0 2 2 ( sin cos ) = 0 or = 2 sin cos .

(b) + 2 + 3 = 1 sin cos + 2 sin sin + 3 cos = 1 or = 1 (sin cos + 2 sin sin + 3 cos ).
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586 ¤ CHAPTER 15 MULTIPLE INTEGRALS

11. 2 4 represents the solid region between and including the spheres of

radii 2 and 4, centered at the origin. 0
3
restricts the solid to that

portion on or above the cone =
3
, and 0 further restricts the

solid to that portion on or to the right of the -plane.

12. 1 2 represents the solid region between and including the spheres of

radii 1 and 2, centered at the origin. 0 2 restricts the solid to that

portion on or above the -plane, and
2

3
2
further restricts the solid

to that portion on or behind the -plane.

13. 1 represents the solid sphere of radius 1 centered at the origin.

3
4

restricts the solid to that portion on or below the cone = 3
4
.

14. 2 represents the solid sphere of radius 2 centered at the origin. Notice

that 2 + 2 = ( sin cos )2 + ( sin sin )2 = 2 sin2 . Then

= csc sin = 1 2 sin2 = 2 + 2 = 1, so csc

restricts the solid to that portion on or inside the circular cylinder

2 + 2 = 1.

15. 2 + 2 because the solid lies above the cone. Squaring both sides of this inequality gives 2 2 + 2

2 2 2 + 2 + 2 = 2 2 = 2 cos2 1
2

2 cos2 1
2
. The cone opens upward so that the inequality is

cos 1

2
, or equivalently 0

4
. In spherical coordinates the sphere = 2 + 2 + 2 is cos = 2

= cos . 0 cos because the solid lies below the sphere. The solid can therefore be described as the region in

spherical coordinates satisfying 0 cos , 0 4 .
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SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ¤ 587

16. (a) The hollow ball is a spherical shell with outer radius 15 cm and inner radius 14.5 cm. If we center the ball at the origin of

the coordinate system and use centimeters as the unit of measurement, then spherical coordinates conveniently describe the

hollow ball as 14 5 15, 0 2 , 0 .

(b) If we position the ball as in part (a), one possibility is to take the half of the ball that is above the -plane which is

described by 14 5 15, 0 2 , 0 2.

17. The region of integration is given in spherical coordinates by

= {( ) | 0 3 0 2 0 6}. This represents the solid
region in the first octant bounded above by the sphere = 3 and below by the cone

= 6.

6

0

2

0

3

0
2 sin =

6

0
sin

2

0

3

0
2

= cos
6

0

2

0
1
3

3 3

0

= 1
3

2 2
(9) =

9

4
2 3

18. The region of integration is given in spherical coordinates by

= {( ) | 1 2 0 2 2 }. This represents the solid
region between the spheres = 1 and = 2 and below the -plane.

2

0 2

2

1
2 sin =

2

0 2
sin

2

1
2

=
2

0
cos

2
1
3

3 2

1

= 2 (1) 7
3
= 14

3

19. The solid is most conveniently described if we use cylindrical coordinates:

= ( ) | 0
2
0 3 0 2 . Then

( ) =
2

0

3

0

2

0
( cos sin ) .

20. The solid is most conveniently described if we use spherical coordinates:

= ( ) | 1 2
2

2 0
2
. Then

( ) =
2

0

2

2

2

1
( sin cos sin sin cos ) 2 sin .

21. In spherical coordinates, is represented by {( ) | 0 5 0 2 0 }. Thus

( 2 + 2 + 2)2 =
0

2

0

5

0
( 2)2 2 sin =

0
sin

2

0

5

0
6

= cos
0

2

0
1
7

7 5

0
= (2)(2 ) 78,125

7

= 312,500
7

140,249 7

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.licated, or posted to a publicly accessible website, in whole or in par

663109



588 ¤ CHAPTER 15 MULTIPLE INTEGRALS

22. In spherical coordinates, is represented by ( ) 0 3 0 2 0
2
. Thus

(9 2 2) =
2

0

2

0

3

0
9 ( 2 sin2 cos2 + 2 sin2 sin2 ) 2 sin

=
2

0

2

0

3

0
(9 2 sin2 ) 2 sin

=
2

0

2

0
3 3 1

5
5 sin2

=3

=0
sin

=
2

0

2

0
81 sin 243

5
sin3

=
2

0

2

0
81 sin 243

5
(1 cos2 ) sin

= 2 81 cos 243
5

1
3
cos3 cos

2

0

= 2 0 + 81 + 243
5

2
3

= 486
5

23. In spherical coordinates, is represented by {( ) | 2 3 0 2 0 } and
2 + 2 = 2 sin2 cos2 + 2 sin2 sin2 = 2 sin2 cos2 + sin2 = 2 sin2 . Thus

( 2 + 2) =
0

2

0

3

2
( 2 sin2 ) 2 sin =

0
sin3

2

0

3

2
4

=
0
(1 cos2 ) sin

2

0
1
5

5 3

2
= cos + 1

3
cos3

0
(2 ) · 1

5
(243 32)

= 1 1
3 + 1

1
3
(2 ) 211

5
= 1688

15

24. In spherical coordinates, is represented by {( ) | 0 3 0 0 }. Thus
2 =

0 0

3

0
( sin sin )2 2 sin =

0
sin3

0
sin2

3

0
4

=
0
(1 cos2 ) sin

0
1
2
(1 cos 2 )

3

0
4

= cos + 1
3
cos3

0
1
2

1
2
sin 2

0
1
5

5 3

0

= 2
3
+ 2

3
1
2

1
5
(243) = 4

3 2
243
5

= 162
5

25. In spherical coordinates, is represented by ( ) 0 1 0
2
0

2
. Thus

2+ 2+ 2
=

2

0

2

0

1

0
( sin cos )

2 2 sin =
2

0
sin2

2

0
cos

1

0
3 2

=
2

0
1
2
(1 cos 2 )

2

0
cos 1

2
2 2 1

0

1

0

2

integrate by parts with = 2, =
2

= 1
2

1
4
sin 2

2

0
[sin ] 2

0
1
2

2 2 1
2

2 1

0
=

4
0 (1 0) 0 + 1

2
=

8

26. =
3

0

2

0

4

2
( sin cos )( sin sin )( cos ) 2 sin

=
3

0
sin3 cos

2

0
sin cos

4

2
5 = 1

4
sin4

3

0
1
2
sin2

2

0
1
6

6 4

2
= 0
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SECTION 16.8 STOKES’  THEOREM 1127

1. A hemisphere and a portion of a paraboloid are shown.
Suppose is a vector field on whose components have con-
tinuous partial derivatives. Explain why

2–6 Use Stokes’ Theorem to evaluate .

2. ,
is the hemisphere , , oriented 

upward

3. ,
is the part of the paraboloid that lies inside the

cylinder , oriented upward

4. ,
is the cone , , oriented in the direc-

tion of the positive -axis

5. ,
consists of the top and the four sides (but not the bottom) 

of the cube with vertices , oriented outward

6. ,
is the half of the ellipsoid that lies to

the right of the -plane, oriented in the direction of the
positive -axis

7–10 Use Stokes’ Theorem to evaluate . In each case is
oriented counterclockwise as viewed from above.

7. ,
is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1)

8. ,
is the boundary of the part of the plane 

in the first octant

9. ,
is the circle 

H P
F �3

yy
H

curl F � dS � yy
P

curl F � dS

H

4

z

x y22

P

4

z

x y22

xxS curl F � dS

F�x, y, z� � 2y cos z i � e x sin z j � xe y k
S x 2 � y 2 � z2 � 9 z � 0

F�x, y, z� � x 2z2 i � y2z2 j � xyz k
S z � x 2 � y2

x 2 � y2 � 4

F�x, y, z� � tan�1�x 2yz2� i � x 2y j � x 2z2 k
S x � sy 2 � z2 0 � x � 2

x

F�x, y, z� � xyz i � xy j � x 2yz k
S

��1, �1, �1�

F�x, y, z� � e xy i � e xz j � x 2z k
S 4x 2 � y 2 � 4z 2 � 4

xz

xC F � dr C

F�x, y, z� � �x � y 2 � i � �y � z2 � j � �z � x 2 � k
C

F�x, y, z� � i � �x � yz� j � (xy � sz ) k
C 3x � 2y � z � 1

F�x, y, z� � yz i � 2xz j � e xy k
C x 2 � y 2 � 16, z � 5

y

10. ,  is the curve of intersec-
tion of the plane and the cylinder 

11. (a) Use Stokes’ Theorem to evaluate , where

and is the curve of intersection of the plane
and the cylinder oriented

counterclockwise as viewed from above.
; (b) Graph both the plane and the cylinder with domains 

chosen so that you can see the curve and the surface 
that you used in part (a).

; (c) Find parametric equations for and use them to graph .

12. (a) Use Stokes’ Theorem to evaluate , where
and is the curve of

intersection of the hyperbolic paraboloid and
the cylinder oriented counterclockwise as
viewed from above.

; (b) Graph both the hyperbolic paraboloid and the cylinder
with domains chosen so that you can see the curve and
the surface that you used in part (a).

; (c) Find parametric equations for and use them to graph .

13–15 Verify that Stokes’ Theorem is true for the given vector 
field and surface .

13. ,
is the cone , , oriented downward

14. ,
is the part of the paraboloid that lies

above the plane , oriented upward

15. ,
is the hemisphere , , oriented in the

direction of the positive -axis

16. Let be a simple closed smooth curve that lies in the plane
. Show that the line integral

depends only on the area of the region enclosed by and not
on the shape of or its location in the plane.

17. A particle moves along line segments from the origin to the
points , , , and back to the origin
under the influence of the force field 

Find the work done.

F�x, y, z� � xy i � 2z j � 3yk C
x � z � 5 x 2 � y 2 � 9

xC F � dr

F�x, y, z� � x 2z i � xy 2 j � z2 k

C
x 2 � y 2 � 9x � y � z � 1

C

CC

xC F � dr
CF�x, y, z� � x 2y i �

1
3 x 3 j � xy k

z � y 2 � x 2

x 2 � y 2 � 1

C

CC

SF

F�x, y, z� � �y i � x j � 2 k
0 � z � 4z 2 � x 2 � y2S

F�x, y, z� � �2yz i � y j � 3x k
z � 5 � x 2 � y 2S

z � 1

F�x, y, z� � y i � z j � x k
y � 0x 2 � y 2 � z 2 � 1S

y

C
x � y � z � 1

xC z dx � 2x dy � 3y dz

C
C

�0, 2, 1��1, 2, 1��1, 0, 0�

F�x, y, z� � z 2 i � 2xy j � 4y 2 k

16.8 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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684 ¤ CHAPTER 16 VECTOR CALCULUS

48. ( ) = 2 + 2 + 2,

F= =
( 2 + 2 + 2)3 2

i
( 2 + 2 + 2)3 2

j
( 2 + 2 + 2)3 2

k

=
( 2 + 2 + 2)3 2

( i+ j+ k)

and the outward unit normal is n = 1
( i+ j+ k).

Thus F · n =
( 2 + 2 + 2)3 2

( 2 + 2 + 2), but on , 2 + 2 + 2 = 2 so F · n =
2

. Hence the rate of heat flow

across is F · S =
2

=
2
(4 2) = 4 .

49. Let be a sphere of radius centered at the origin. Then |r| = and F(r) = r |r|3 = 3 ( i+ j+ k). A

parametric representation for is r( ) = sin cos i+ sin sin j+ cos k, 0 , 0 2 . Then

r = cos cos i+ cos sin j sin k, r = sin sin i+ sin cos j, and the outward orientation is given

by r × r = 2 sin2 cos i+ 2 sin2 sin j+ 2 sin cos k. The flux of F across is

F · S=
0

2

0 3
( sin cos i+ sin sin j+ cos k)

· 2 sin2 cos i+ 2 sin2 sin j+ 2 sin cos k

=
3 0

2

0
3 sin3 + sin cos2 =

0

2

0
sin = 4

Thus the flux does not depend on the radius .

16.8 Stokes' Theorem

1. Both and are oriented piecewise-smooth surfaces that are bounded by the simple, closed, smooth curve 2 + 2 = 4,

= 0 (which we can take to be oriented positively for both surfaces). Then and satisfy the hypotheses of Stokes’

Theorem, so by (3) we know curlF · S = F · r = curlF · S (where is the boundary curve).

2. The boundary curve is the circle 2 + 2 = 9, = 0 oriented in the counterclockwise direction when viewed from above.

A vector equation of is r( ) = 3 cos i+ 3 sin j, 0 2 , so r0( ) = 3 sin i+ 3 cos j and

F(r( )) = 2(3 sin )(cos 0) i+ 3 cos (sin 0) j+ (3 cos ) 3 sin k = 6 sin i+ (3 cos ) 3 sin k. Then, by Stokes’ Theorem,

curlF · S = F · r = 2

0
F(r( )) · r0( ) =

2

0
( 18 sin2 + 0 + 0) = 18 1

2
1
4
sin 2

2

0
= 18 .

3. The paraboloid = 2 + 2 intersects the cylinder 2 + 2 = 4 in the circle 2 + 2 = 4, = 4. This boundary curve

should be oriented in the counterclockwise direction when viewed from above, so a vector equation of is

r( ) = 2 cos i+ 2 sin j+ 4k, 0 2 . Then r0( ) = 2 sin i+ 2 cos j,

F(r( )) = (4 cos2 )(16) i+ (4 sin2 )(16) j+ (2 cos )(2 sin )(4)k = 64 cos2 i+ 64 sin2 j+ 16 sin cos k
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SECTION 16.8 STOKES’ THEOREM ¤ 685

and by Stokes’ Theorem,

curlF · S= F · r = 2

0
F(r( )) · r0( ) =

2

0
( 128 cos2 sin + 128 sin2 cos + 0)

= 128 1
3
cos3 + 1

3
sin3

2

0
= 0

4. The boundary curve is the circle 2 + 2 = 4, = 2 which should be oriented in the counterclockwise direction when

viewed from the front, so a vector equation of is r( ) = 2 i+ 2 cos j+ 2 sin k, 0 2 . Then

F(r( )) = tan 1(32 cos sin2 ) i + 8cos j+ 16 sin2 k, r0( ) = 2 sin j+ 2 cos k, and

F(r( )) · r0( ) = 16 sin cos + 32 sin2 cos . Thus

curlF · S = F · r = 2

0
F(r( )) · r0( ) =

2

0
( 16 sin cos + 32 sin2 cos )

= 8 sin2 + 32
3
sin3

2

0
= 0

5. is the square in the plane = 1. Rather than evaluating a line integral around we can use Equation 3:

1
curlF · S = F · r =

2
curlF · S where 1 is the original cube without the bottom and 2 is the bottom face

of the cube. curlF = 2 i+ ( 2 ) j+ ( )k. For 2, we choose n = k so that has the same orientation for

both surfaces. Then curlF · n = = + on 2, where = 1. Thus
2
curlF · S = 1

1

1

1
( + ) = 0

so
1
curlF · S = 0.

6. The boundary curve is the circle 2 + 2 = 1, = 0 which should be oriented in the counterclockwise direction when

viewed from the right, so a vector equation of is r( ) = cos( ) i+ sin( )k = cos i sin k, 0 2 . Then

F(r( )) = i+ cos sin j cos2 sin k, r0( ) = sin i cos k, and F(r( )) · r0( ) = sin + cos3 sin . Thus

curlF · S = F · r = 2

0
F(r( )) · r0( ) =

2

0
( sin + cos3 sin )

= cos 1
4
cos4

2

0
= 0

7. curl F = 2 i 2 j 2 k and we take the surface to be the planar region enclosed by , so is the portion of the plane

+ + = 1 over = {( ) | 0 1, 0 1 }. Since is oriented counterclockwise, we orient upward.

Using Equation 16.7.10, we have = ( ) = 1 , = 2 , = 2 , = 2 , and

F · r= curlF · S = [ ( 2 )( 1) ( 2 )( 1) + ( 2 )]

=
1

0

1

0
( 2) = 2

1

0
(1 ) = 1

8. curlF = ( ) i j + k and is the portion of the plane 3 + 2 + = 1 over

= ( ) | 0 1
3
0 1

2
(1 3 ) . We orient upward and use Equation 16.7.10 with

= ( ) = 1 3 2 :

F · r= curlF · S = [ ( )( 3) ( )( 2) + 1] =
1 3

0

(1 3 ) 2

0
(1 + 3 5 )

=
1 3

0
(1 + 3 ) 5

2
2 =(1 3 ) 2

=0
=

1 3

0
1
2
(1 + 3 )(1 3 ) 5

2
· 1
4
(1 3 )2

=
1 3

0
81
8

2 + 15
4

1
8

= 27
8

3 + 15
8

2 1
8

1 3

0
= 1

8
+ 5

24
1
24
= 1

24
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1016 CHAPTER 15 MULTIPLE INTEGRALS

1–12 Find the area of the surface.

1. The part of the plane that lies above the 
rectangle

2. The part of the plane that lies inside the
cylinder

3. The part of the plane that lies in the 
first octant

4. The part of the surface that lies above
the triangle with vertices , , and 

5. The part of the cylinder that lies above the rect-
angle with vertices , , , and 

6. The part of the paraboloid that lies above 
the -plane

7. The part of the hyperbolic paraboloid that lies
between the cylinders and

8. The surface , , 

9. The part of the surface that lies within the cylinder

10. The part of the sphere that lies above the
plane

11. The part of the sphere that lies within the
cylinder and above the -plane

12. The part of the sphere that lies inside the
paraboloid

13–14 Find the area of the surface correct to four decimal places
by expressing the area in terms of a single integral and using
your calculator to estimate the integral.

13. The part of the surface that lies above the disk

14. The part of the surface that lies inside the
cylinder

15. (a) Use the Midpoint Rule for double integrals (see Sec -
tion 15.1) with four squares to estimate the surface area 
of the portion of the paraboloid that lies
above the square .

(b) Use a computer algebra system to approximate the sur-
face area in part (a) to four decimal places. Compare
with the answer to part (a).

z � 2 � 3x � 4y
�0, 5� � �1, 4�

2x � 5y � z � 10
x 2 � y 2 � 9

3x � 2y � z � 6

z � 1 � 3x � 2y 2

�0, 0� �0, 1� �2, 1�

y 2 � z2 � 9
�0, 0� �4, 0� �0, 2� �4, 2�

z � 4 � x 2 � y 2

xy

z � y 2 � x 2

x 2 � y 2 � 1 x 2 � y 2 � 4

z � 2
3 �x 3�2 � y 3�2 � 0 � x � 1 0 � y � 1

z � xy
x 2 � y 2 � 1

x 2 � y 2 � z2 � 4
z � 1

x 2 � y 2 � z2 � a 2

x 2 � y 2 � ax xy

x 2 � y 2 � z2 � 4z
z � x 2 � y 2

z � e�x2�y2

x 2 � y 2 � 4

z � cos�x 2 � y 2�
x 2 � y 2 � 1

z � x 2 � y 2

�0, 1� � �0, 1�
CAS

16. (a) Use the Midpoint Rule for double integrals with
to estimate the area of the surface

, , .
(b) Use a computer algebra system to approximate the sur-

face area in part (a) to four decimal places. Compare
with the answer to part (a).

17. Find the exact area of the surface ,
, .

18. Find the exact area of the surface

Illustrate by graphing the surface.

19. Find, to four decimal places, the area of the part of the sur-
face that lies above the disk .

20. Find, to four decimal places, the area of the part of the 
surface that lies above the square

. Illustrate by graphing this part of the
surface.

21. Show that the area of the part of the plane
that projects onto a region in the -plane with area
is .

22. If you attempt to use Formula 2 to find the area of the top
half of the sphere , you have a slight
problem because the double integral is improper. In fact, the
integrand has an infinite discontinuity at every point of the
boundary circle . However, the integral can 
be computed as the limit of the integral over the disk

as . Use this method to show that the
area of a sphere of radius is .

23. Find the area of the finite part of the paraboloid
cut off by the plane . [Hint: Project the surface onto
the -plane.]

24. The figure shows the surface created when the cylinder
intersects the cylinder . Find the 

area of this surface.

z � 1 � 2x � 3y � 4y 2

1 � x � 4 0 � y � 1

z � 1 � x � y � x 2 �2 � x � 1 �1 � y � 1

z � 1 � x 2 y 2 x 2 � y 2 � 1

z � �1 � x 2 ���1 � y 2 �
� x � � � y � � 1

z � ax � by � c
D xy A�D�

sa 2 � b 2 � 1 A�D�

x 2 � y 2 � z2 � a 2

x 2 � y 2 � a 2

x 2 � y 2 � t 2 t l a �

a 4�a 2

y � x 2 � z 2

y � 25
xz

y 2 � z 2 � 1 x 2 � z 2 � 1

z 

y 

x 

CAS

CAS

CAS

CAS

m � n � 2
z � xy � x 2 � y 2 0 � x � 2 0 � y � 2

CAS

15.6 Exercises

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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SECTION 15.6 SURFACE AREA ¤ 553

is again (see the figure). So

=
2

2

20 cos

0

1 1
20

=
2

2

1
2

2 1
60

3 =20 cos

=0

=
2

2
200 cos2 400

3
cos3 = 200

2

2
1
2
+ 1

2
cos 2 2

3
1 sin2 cos

= 200 1
2
+ 1

4
sin 2 2

3
sin + 2

3
· 1
3
sin3

2

2
= 200

4
+ 0 2

3
+ 2

9
+

4
+ 0 2

3
+ 2

9

= 200
2

8
9

136

Therefore the risk of infection is much lower at the edge of the city than in the middle, so it is better to live at the edge.

15.6 Surface Area

1. Here = ( ) = 2 + 3 + 4 and is the rectangle [0 5]× [1 4], so by Formula 2 the area of the surface is

( ) = [ ( )]2 + [ ( )]2 + 1 = 32 + 42 + 1 = 26

= 26 ( ) = 26 (5)(3) = 15 26

2. = ( ) = 10 2 5 and is the disk 2 + 2 9, so by Formula 2

( ) = ( 2)2 + ( 5)2 + 1 = 30 = 30 ( ) = 30 ( · 32) = 9 30

3. = ( ) = 6 3 2 which intersects the -plane in the line 3 + 2 = 6, so is the triangular region given by

( ) 0 2 0 3 3
2

. Thus

( ) = ( 3)2 + ( 2)2 + 1 = 14 = 14 ( ) = 14 1
2
· 2 · 3 = 3 14

4. = ( ) = 1 + 3 + 2 2 with 0 2 , 0 1. Thus by Formula 2,

( ) = 1 + (3)2 + (4 )2 =
1

0

2

0
10 + 16 2 =

1

0
10 + 16 2 =2

=0

=
1

0
2 10 + 16 2 = 2 · 1

32 · 23 (10 + 16 2)3 2
1

0
= 1

24 (26
3 2 103 2)

5. 2 + 2 = 9 = 9 2. = 0, = (9 2) 1 2

( ) =
4

0

2

0

02 + [ (9 2) 1 2]2 + 1 =
4

0

2

0

2

9 2
+ 1

=
4

0

2

0

3

9 2
= 3

4

0

sin 1

3

=2

=0
= 3 sin 1 2

3

4

0
= 12 sin 1 2

3

6. = ( ) = 4 2 2 and is the projection of the paraboloid = 4 2 2 onto the -plane, that is,

= ( ) | 2 + 2 4 . So = 2 , = 2

( ) = ( 2 )2 + ( 2 )2 + 1 = 4( 2 + 2) + 1 =
2

0

2

0
4 2 + 1

=
2

0
1
12 (4

2 + 1)3 2
=2

=0
=

2

0
1
12
17 17 1 = 6

17 17 1
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554 ¤ CHAPTER 15 MULTIPLE INTEGRALS

7. = ( ) = 2 2 with 1 2 + 2 4. Then

( ) = 1 + 4 2 + 4 2 =
2

0

2

1
1 + 4 2 =

2

0

2

1
1 + 4 2

=
2

0
1
12
(1 + 4 2)3 2

2

1
=

6
17 17 5 5

8. = ( ) = 2
3
( 3 2 + 3 2) and = {( ) | 0 1 0 1}. Then = 1 2, = 1 2 and

( ) =
2
+ ( )2 + 1 =

1

0

1

0

+ + 1 =
1

0

2
3
( + + 1)3 2

=1

=0

= 2
3

1

0
( + 2)3 2 ( + 1)3 2 = 2

3
2
5
( + 2)5 2 2

5
( + 1)5 2

1

0

= 4
15
(35 2 25 2 25 2 + 1) = 4

15
(35 2 27 2 + 1)

9. = ( ) = with 2 + 2 1, so = , =

( ) = 2 + 2 + 1 =
2

0

1

0
2 + 1 =

2

0
1
3
( 2 + 1)3 2

=1

=0

=
2

0
1
3
2 2 1 = 2

3
2 2 1

10. Given the sphere 2 + 2 + 2 = 4, when = 1, we get 2 + 2 = 3 so = ( ) | 2 + 2 3 and

= ( ) = 4 2 2. Thus

( ) = [( )(4 2 2) 1 2]2 + [( )(4 2 2) 1 2]2 + 1

=
2

0

3

0

2

4 2
+ 1 =

2

0

3

0

2 + 4 2

4 2

=
2

0

3

0

2

4 2

=
2

0
2(4 2)1 2

= 3

=0
=

2

0
( 2 + 4) = 2

2

0
= 4

11. = 2 2 2, = ( 2 2 2) 1 2, = ( 2 2 2) 1 2,

( ) =
2 + 2

2 2 2
+ 1

=
2

2

cos

0

2

2 2
+ 1

=
2

2

cos

0
2 2

=
2

2

2 2
= cos

=0

=
2

2

2 2 cos2 = 2 2
2

0

1 1 cos2

= 2 2
2

0

2 2
2

0

sin2 = 2 2 2
2

0

sin = 2( 2)
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS 1109

26. The part of the plane that lies inside the cylinder

27–28 Use a computer algebra system to produce a graph that
looks like the given one.

27. 28.

; 29. Find parametric equations for the surface obtained by 
rotating the curve , , about the -axis and
use them to graph the surface.

; 30. Find parametric equations for the surface obtained by 
rotating the curve , , about the 
-axis and use them to graph the surface.

; 31. (a) What happens to the spiral tube in Example 2 (see Fig-
 ure 5) if we replace by and by ?

(b) What happens if we replace by and 
by ?

; 32. The surface with parametric equations

where and , is called a Möbius
strip. Graph this surface with several viewpoints. What is
unusual about it?

33–36 Find an equation of the tangent plane to the given
parametric surface at the specified point.

33. ,  ,  ;  

34. ,  ,  ;  

35. ;  , 

36. ;
,

37–38 Find an equation of the tangent plane to the given
parametric surface at the specified point. Graph the surface and
the tangent plane.

37. ;  , 

z � x � 3
x 2 � y 2 � 1

CAS

3

0

_3
_3

0

0 5

z

y
x

0

_1
_1

1

0
1

0

_1

z

y x

y � e �x 0 � x � 3 x

x � 4y 2 � y 4 �2 � y � 2
y

cos usin usin ucos u
sin ucos 2ucos u

sin 2u

x � 2 cos � � r cos���2�

y � 2 sin � � r cos���2�

z � r sin���2�

0 � � � 2��
1
2 � r �

1
2

�2, 3, 0�z � u � vy � 3u2x � u � v

�5, 2, 3�z � u � vy � v 3 � 1x � u2 � 1

v � ��3u � 1r�u, v� � u cos v i � u sin v j � v k

r�u, v� � sin u i � cos u sin v j � sin v k
v � ��6u � ��6

CAS

v � 0u � 1r�u, v� � u 2 i � 2u sin v j � u cos v k

38. ;

39–50 Find the area of the surface.

39. The part of the plane that lies in the 
first octant

40. The part of the plane with vector equation
that is given by

41. The part of the plane that lies inside the 
cylinder

42. The part of the cone that lies between the
plane and the cylinder 

43. The surface , , 

44. The part of the surface that lies above the
triangle with vertices , , and 

45. The part of the surface that lies within the 
cylinder

46. The part of the paraboloid that lies inside the
cylinder

47. The part of the surface that lies between the
planes , , , and 

48. The helicoid (or spiral ramp) with vector equation
, , 

49. The surface with parametric equations , ,
, , 

50. The part of the sphere that lies inside the
cylinder , where 

51. If the equation of a surface is , where
, and you know that and ,

what can you say about ?

52–53 Find the area of the surface correct to four decimal places
by expressing the area in terms of a single integral and using
your calculator to estimate the integral.

52. The part of the surface that lies inside the
cylinder

53. The part of the surface that lies above the 
disk

54. Find, to four decimal places, the area of the part of the sur-
face that lies above the square

. Illustrate by graphing this part of the
surface.

55. (a) Use the Midpoint Rule for double integrals (see Sec -
tion 15.1) with six squares to estimate the area of the 
surface , , .

r�u, v� � �1 � u 2 � v 2� i � v j � u k ��1, �1, �1�

3x � 2y � z � 6

r�u, v� � �u � v, 2 � 3u, 1 � u � v �
0 � u � 2, �1 � v � 1

x � 2y � 3z � 1
x 2 � y2 � 3

z � sx 2 � y2

y � x y � x 2

z � 2
3 �x 3�2 � y 3�2 � 0 � x � 1 0 � y � 1

z � 1 � 3x � 2y 2

z � xy
x 2 � y 2 � 1

x � y 2 � z2

y 2 � z2 � 9

y � 4x � z2

x � 0 x � 1 z � 0 z � 1

r�u, v� � u cos v i � u sin v j � v k 0 � u � 1 0 � v � �

x � u2 y � uv
z � 1

2v 2 0 � u � 1 0 � v � 2

x 2 � y2 � z 2 � b2

x 2 � y 2 � a 2 0 � a � b

S z � f �x, y�
x 2 � y 2 � R 2 � fx � � 1 � fy � � 1

A�S�

z � cos�x 2 � y 2�
x 2 � y 2 � 1

z � e�x2�y2

x 2 � y 2 � 4

�0, 0� �0, 1� �2, 1�

CAS

z � �1 � x 2 ���1 � y 2 �
� x � � � y � � 1

0 � y � 40 � x � 6z � 1��1 � x 2 � y 2�
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 665

31. (a) Replacing cos by sin and sin by cos gives parametric equations

= (2 + sin ) sin , = (2 + sin ) cos , = + cos . From the graph, it

appears that the direction of the spiral is reversed. We can verify this observation by

noting that the projection of the spiral grid curves onto the -plane, given by

= (2 + sin ) sin , = (2 + sin ) cos , = 0, draws a circle in the clockwise

direction for each value of . The original equations, on the other hand, give circular

projections drawn in the counterclockwise direction. The equation for is identical in

both surfaces, so as increases, these grid curves spiral up in opposite directions for

the two surfaces.

(b) Replacing cos by cos 2 and sin by sin 2 gives parametric equations

= (2 + sin ) cos 2 , = (2 + sin ) sin 2 , = + cos . From the graph, it

appears that the number of coils in the surface doubles within the same parametric

domain. We can verify this observation by noting that the projection of the spiral grid

curves onto the -plane, given by = (2 + sin ) cos 2 , = (2 + sin ) sin 2 ,

= 0 (where is constant), complete circular revolutions for 0 while the

original surface requires 0 2 for a complete revolution. Thus, the new

surface winds around twice as fast as the original surface, and since the equation for

is identical in both surfaces, we observe twice as many circular coils in the same

-interval.

32. First we graph the surface as viewed from the front, then from two additional viewpoints.

The surface appears as a twisted sheet, and is unusual because it has only one side. (The Möbius strip is discussed in more

detail in Section 16.7.)

33. r( ) = ( + ) i+ 3 2 j+ ( )k.

r = i+ 6 j+ k and r = i k, so r × r = 6 i+ 2 j 6 k. Since the point (2 3 0) corresponds to = 1, = 1, a

normal vector to the surface at (2 3 0) is 6 i+ 2 j 6k, and an equation of the tangent plane is 6 + 2 6 = 6 or

3 + 3 = 3.

34. r( ) = ( 2 + 1) i+ ( 3 + 1) j+ ( + )k.

r = 2 i+ k and r = 3 2 j+ k, so r × r = 3 2 i 2 j+ 6 2 k. Since the point (5 2 3) corresponds to = 2,

= 1, a normal vector to the surface at (5 2 3) is 3 i 4 j+ 12k, and an equation of the tangent plane is

3( 5) 4( 2) + 12( 3) = 0 or 3 + 4 12 = 13.
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666 ¤ CHAPTER 16 VECTOR CALCULUS

35. r( ) = cos i+ sin j+ k r 1
3
= 1

2
3
2 3

.

r = cos i+ sin j and r = sin i+ cos j+ k, so a normal vector to the surface at the point 1
2

3
2 3

is

r 1
3
× r 1

3
= 1

2
i+ 3

2
j × 3

2
i+ 1

2
j+ k = 3

2
i 1

2
j+ k. Thus an equation of the tangent plane at

1
2

3
2 3

is 3
2

1
2

1
2

3
2

+ 1
3
= 0 or 3

2
1
2
+ =

3
.

36. r( ) = sin i+ cos sin j+ sin k r 6 6
= 1

2
3
4

1
2
.

r = cos i sin sin j and r = cos cos j+ cos k, so a normal vector to the surface at the point 1
2

3
4

1
2
is

r
6 6

× r
6 6

= 3
2
i 1

4
j × 3

4
j+ 3

2
k = 3

8
i 3

4
j+ 3 3

8
k.

Thus an equation of the tangent plane at 1
2

3
4

1
2
is 3

8
1
2

3
4

3
4

+ 3 3
8

1
2
= 0 or

3 + 6 3 3 = 3
2
or 2 + 4 3 6 = 1.

37. r( ) = 2 i+ 2 sin j+ cos k r(1 0) = (1 0 1).

r = 2 i+ 2 sin j+ cos k and r = 2 cos j sin k,

so a normal vector to the surface at the point (1 0 1) is

r (1 0)× r (1 0) = (2 i+ k)× (2 j) = 2 i+ 4k.

Thus an equation of the tangent plane at (1 0 1) is

2( 1) + 0( 0) + 4( 1) = 0 or + 2 = 1.

38. r( ) = (1 2 2) i j k.

r = 2 i k and r = 2 i j. Since the point ( 1 1 1)

corresponds to = 1, = 1, a normal vector to the surface at

( 1 1 1) is

r (1 1)× r (1 1) = ( 2 i k)× ( 2 i j) = i+ 2 j+ 2k.

Thus an equation of the tangent plane is 1( + 1) + 2( + 1) + 2( + 1) = 0 or + 2 + 2 = 3.

39. The surface is given by = ( ) = 6 3 2 which intersects the -plane in the line 3 + 2 = 6, so is the

triangular region given by ( ) 0 2 0 3 3
2 . By Formula 9, the surface area of is

( ) = 1 +
2

+
2

= 1 + ( 3)2 + ( 2)2 = 14 = 14 ( ) = 14 1
2 · 2 · 3 = 3 14

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE

°°cc 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.duplicated, or posted to a publicly accessible website, in whole or in part.

691122



SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 667

40. r = h1 3 1i, r = h1 0 1i, and r × r = h3 2 3i. Then by Definition 6,

( ) = | r × r | =
2

0

1

1
| h3 2 3i | = 22

2

0

1

1
= 22 (2)(2) = 4 22

41. Here we can write = ( ) = 1
3

1
3

2
3
and is the disk 2 + 2 3, so by Formula 9 the area of the surface is

( ) = 1 +
2

+
2

= 1 + 1
3

2
+ 2

3

2
= 14

3

= 14
3

( ) = 14
3
· 3

2
= 14

42. = ( ) = 2 + 2 =
1

2
2 + 2 1 2 · 2 =

2 + 2
, =

2 + 2
, and

1 +
2

+
2

= 1 +
2

2 + 2
+

2

2 + 2
= 1 +

2 + 2

2 + 2
= 2

Here is given by ( ) 0 1 2 , so by Formula 9, the surface area of is

( ) = 2 =
1

0 2 2 = 2
1

0
2 = 2 1

2
2 1

3
3 1

0
= 2 1

2
1
3
= 2

6

43. = ( ) = 2
3 (

3 2 + 3 2) and = {( ) | 0 1 0 1}. Then = 1 2, = 1 2 and

( ) = 1 + ( )
2
+

2
=

1

0

1

0
1 + +

=
1

0
2
3
( + + 1)3 2

=1

=0
= 2

3

1

0
( + 2)3 2 ( + 1)3 2

= 2
3

2
5 ( + 2)5 2 2

5 ( + 1)5 2
1

0
= 4

15 (3
5 2 25 2 25 2 + 1) = 4

15 (3
5 2 27 2 + 1)

44. = ( ) = 1 + 3 + 2 2 with 0 2 , 0 1. Thus, by Formula 9,

( ) = 1 + 32 + (4 )2 =
1

0

2

0
10 + 16 2 =

1

0
2 10 + 16 2

= 1
16
· 2
3
(10 + 16 2)3 2

1

0
= 1

24
(263 2 103 2)

45. = ( ) = with 2 + 2 1, so = , =

( ) = 1 + 2 + 2 =
2

0

1

0
2 + 1 =

2

0
1
3
( 2 + 1)3 2

=1

=0

=
2

0
1
3
2 2 1 = 2

3
2 2 1

46. A parametric representation of the surface is = 2 + 2, = , = with 0 2 + 2 9.

Hence r × r = (2 i+ j)× (2 i+ k) = i 2 j 2 k.

Note: In general, if = ( ) then r × r = i j k, and ( ) = 1 +
2

+
2

. Then

( ) =
0 2 + 2 9

1 + 4 2 + 4 2 =
2

0

3

0
1 + 4 2

=
2

0

3

0
1 + 4 2 = 2 1

12
(1 + 4 2)3 2

3

0
=

6
37 37 1
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0.0.18 Questions Solutions Tangent Line



 SECTION 13.2  Derivatives and Integrals of Vector functions 857

EXAMPLE 1 
(a) Find the derivative of rstd − s1 1 t 3 d

 

i 1 te2t j 1 sin 2t k.
(b) Find the unit tangent vector at the point where t − 0.

SOLUTION

(a) According to Theorem 2, we differentiate each component of r:

r9std − 3t 2 i 1 s1 2 tde2t j 1 2 cos 2t k

(b) Since rs0d − i and r9s0d − j 1 2k, the unit tangent vector at the point s1, 0, 0d is

 Ts0d −
r9s0d

| r9s0d | −
j 1 2k

s1 1 4 
−

1

s5 
 j 1

2

s5 
 k 

EXAMPLE 2 For the curve rstd − st  i 1 s2 2 td j, find r9std and sketch the position  
vector rs1d and the tangent vector r9s1d.

SOLUTION We have

r9std −
1

2st 
 i 2 j    and    r9s1d −

1

2
 i 2 j

The curve is a plane curve and elimination of the parameter from the equations  
x − st , y − 2 2 t gives y − 2 2 x 2, x > 0. In Figure 2 we draw the position vector 
rs1d − i 1 j starting at the origin and the tangent vector r9s1d starting at the correspond-
ing point s1, 1d. 

EXAMPLE 3 Find parametric equations for the tangent line to the helix with para- 
metric equations

x − 2 cos t    y − sin t    z − t

at the point s0, 1, �y2d.

SOLUTION The vector equation of the helix is rstd − k2 cos t, sin t, tl, so

r9std − k22 sin t, cos t, 1l

The parameter value corresponding to the point s0, 1, �y2d is t − �y2, so the tangent 
vector there is r9s�y2d − k22, 0, 1l. The tangent line is the line through s0, 1, �y2d 
parallel to the vector k22, 0, 1l, so by Equations 12.5.2 its parametric equations are

 x − 22t    y − 1    z −
�

2
1 t 

z

0

12

1
0

_1
2

0
_2

y

x

8

4

_0.5
0.5

FIGURE 2

Notice from Figure 2 that the tangent 
vector points in the direction of 
increasing t. (See Exercise 58.)

r(1) rª(1)

(1, 1)

0

y

2

x1

FIGURE 3

The helix and the tangent line in 
Example 3 are shown in Figure 3.
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860 CHAPTER 13 Vector Functions

1. The figure shows a curve C given by a vector function rstd.
(a) Draw the vectors rs4.5d 2 rs4d and rs4.2d 2 rs4d.
(b) Draw the vectors

rs4.5d 2 rs4d
0.5

   and    
rs4.2d 2 rs4d

0.2

(c) Write expressions for r9s4d and the unit tangent  
vector Ts4d.

(d)  Draw the vector Ts4d.

x0 1

1

y
RC

Q

P

r(4.5)

r(4.2)

r(4)

2. (a) Make a large sketch of the curve described by the vector 
function rstd − kt 2, t l, 0 < t < 2, and draw the vectors 
rs1d, rs1.1d, and rs1.1d 2 rs1d.

(b) Draw the vector r9s1d starting at (1, 1), and compare it 
with the vector

rs1.1d 2 rs1d
0.1

  Explain why these vectors are so close to each other in 
length and direction.

3–8 
(a) Sketch the plane curve with the given vector equation.
(b) Find r9std.
(c)  Sketch the position vector rstd and the tangent vector r9std for 

the given value of t.

3. rstd − kt 2 2, t 2 1 1l,  t − 21

 4. rstd − kt 2, t 3l,  t − 1

 5. rstd − e2 t i 1 et j, t − 0

6. rstd − e t i 1 2t j, t − 0

7. rstd − 4 sin t i 2 2 cos t j, t − 3�y4

8. rstd − scos t 1 1d i 1 ssin t 2 1d j, t − 2�y3

9–16 Find the derivative of the vector function.

9. rstd − kst 2 2 , 3, 1yt 2l
10. rstd − ke2t, t 2 t 3, ln tl

11. rstd − t 2 i 1 cosst 2d j 1 sin2t k

12. rstd −
1

1 1 t
i 1

t

1 1 t
j 1

t 2

1 1 t
k

13. rstd − t sint t i 1 e t cost t j 1 sin t cost t k

14. rstd − sin2at i 1 te bt j 1 cos2ct k

15. rstd − a 1 t b 1 t 2 c

16. rstd − t a 3 sb 1 t cd

17–20 Find the unit tangent vector Tstd at the point with the 
given value of the parameter t.

17. rstd − k t 2 2 2t, 1 1 3t, 1
3t

3 1 1
2t

2l , t − 2

18. rstd − ktan21 t, 2e 2 t, 8te t l, t − 0

19. rstd − cos t i 1 3t j 1 2 sin 2t k,  t − 0

20. rstd − sin2t i 1 cos2t j 1 tan2 t k, t − �y4

21. If rstd − kt, t 2, t 3l, find r9std, Ts1d, r0std, and r9std 3 r0std.

22. If rstd − ke 2 t, e22 t, te 2 t l, find Ts0d, r0s0d, and r9std ? r0std.

23–26 Find parametric equations for the tangent line to the curve 
with the given parametric equations at the specified point.

23. x − t 2 1 1, y − 4st , z − e t
22t; s2, 4, 1d

24. x − lnst 1 1d, y − t cos 2t t, z − 2 t; s0, 0, 1d

 25. x − e2t cos t t, y − e2t sin t t, z − e2t;  s1, 0, 1d

26. x − st 2 1 3 ,  y − lnst 2 1 3d, z − t;  s2, ln 4, 1d

27. Find a vector equation for the tangent line to the curve of 
intersection of the cylinders x 2 1 y 2 − 25 and y 2 1 z 2 − 20
at the point s3, 4, 2d.

28. Find the point on the curve rstd − k2 cos t, 2 sin t, e t l,  
0 < t < �, where the tangent line is parallel to the plane 
s3 x 1 y − 1.

29–31 Find parametric equations for the tangent line to the curve 
with the given parametric equations at the specified point. Illus-
trate by graphing both the curve and the tangent line on a common 
screen.

29. x − t, y − e2t, z − 2t 2 t 2;  s0, 1, 0d

30. x − 2 cos t, y − 2 sin t, z − 4 cos 2t;  ss3 , 1, 2d
31. x − t cost t, y − t, z − t sint t;  s2�, �, 0d

32. (a) Find the point of intersection of the tangent lines to the 
curve rstd − ksin � t, 2 sin � t, cos � tl at the points 
where t − 0 and t − 0.5.

(b) Illustrate by graphing the curve and both tangent lines.

33. The curves r1std − kt, t 2, t 3l and r2std − ksin t, sin 2t, tl
intersect at the origin. Find their angle of intersection correct 
to the nearest degree.

CAS

;
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328 ¤ CHAPTER 13 VECTOR FUNCTIONS

21. r( ) = 2 3 r0( ) = 1 2 3 2 . Then r0(1) = h1 2 3i and |r0(1)| = 12 + 22 + 32 = 14, so

T(1) =
r0(1)
|r0(1)| =

1

14
h1 2 3i = 1

14

2

14

3

14
. r00( ) = h0 2 6 i, so

r0( )× r00( ) =
i j k

1 2 3 2

0 2 6

=
2 3 2

2 6
i

1 3 2

0 6
j +

1 2

0 2
k

= (12 2 6 2) i (6 0) j+ (2 0)k = 6 2 6 2

22. r( ) = 2 2 2 r0( ) = 2 2 2 2 (2 + 1) 2 r0(0) = 2 0 2 0 (0 + 1) 0 = h2 2 1i

and |r0(0)| = 22 + ( 2)2 + 12 = 3. ThenT(0) = r0 (0)
|r0 (0)| =

1
3
h2 2 1i = 2

3
2
3

1
3
.

r00( ) = 4 2 4 2 (4 + 4) 2 r00(0) = 4 0 4 0 (0 + 4) 0 = h4 4 4i.

r0( ) · r00( ) = 2 2 2 2 (2 + 1) 2 · 4 2 4 2 (4 + 4) 2

= (2 2 )(4 2 ) + ( 2 2 )(4 2 ) + ((2 + 1) 2 )((4 + 4) 2 )

= 8 4 8 4 + (8 2 + 12 + 4) 4 = (8 2 + 12 + 12) 4 8 4

23. The vector equation for the curve is r( ) = 1 + 2 3 3 + , so r0( ) = 1 3 2 1 3 2 + 1 . The point

(3 0 2) corresponds to = 1, so the tangent vector there is r0(1) = h1 2 4i. Thus, the tangent line goes through the point
(3 0 2) and is parallel to the vector h1 2 4i. Parametric equations are = 3 + , = 2 , = 2 + 4 .

24. The vector equation for the curve is r( ) =
2

, so r0( ) = + 2 2 2
+

2

. The point (1 0 0)

corresponds to = 0, so the tangent vector there is r0(0) = h1 1 1i. Thus, the tangent line is parallel to the vector h1 1 1i
and includes the point (1 0 0). Parametric equations are = 1 + 1 · = 1 + , = 0+ 1 · = , = 0 + 1 · = .

25. The vector equation for the curve is r( ) = cos sin , so

r0( ) = ( sin ) + (cos )( ), cos + (sin )( ), ( )

= (cos + sin ) (cos sin )

The point (1 0 1) corresponds to = 0, so the tangent vector there is

r0(0) = 0(cos 0 + sin 0) 0(cos 0 sin 0) 0 = h 1 1 1i. Thus, the tangent line is parallel to the vector
h 1 1 1i and parametric equations are = 1 + ( 1) = 1 , = 0 + 1 · = , = 1 + ( 1) = 1 .

26. The vector equation for the curve is r( ) = 2 + 3 ln( 2 + 3) , so r0( ) = 2 + 3 2 ( 2 + 3) 1 . At (2 ln 4 1),

= 1 and r0(1) = 1
2

1
2
1 . Thus, parametric equations of the tangent line are = 2 + 1

2
, = ln 4 + 1

2
, = 1 + .

27. First we parametrize the curve of intersection. The projection of onto the -plane is contained in the circle
2 + 2 = 25, = 0, so we can write = 5 cos , = 5 sin . also lies on the cylinder 2 + 2 = 20, and 0

near the point (3 4 2), so we can write = 20 2 = 20 25 sin2 . A vector equation then for is
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0.0.19 Questions Solutions Tangent planes



Section 3-1 : Tangent Planes And Linear Approximations - Practice Problems Solutions

2. Find the equation of the tangent plane to  at  .

First, we know we’ll need the two 1st order partial derivatives. Here they are,

Now we also need the two derivatives from the first step and the function evaluated at  . Here are those evaluations,

The tangent plane is then,

z = x√x2 + y2 + y3 (−4, 3)

fx = √x2 + y2 + fy = + 3y2x2

√x2 + y2

xy

√x2 + y2

(−4, 3)

f (−4, 3) = 7 fx (−4, 3) = fy (−4, 3) =
41

5

123

5

z = 7 + (x + 4) + (y − 3) = x + y − 34
41

5

123

5

41

5

123

5

129



Section 3-1 : Tangent Planes And Linear Approximations - Practice Problems Solutions

3. Find the linear approximation to  at  .Then    approximate  f(-1.08, 4.02)

Recall that the linear approximation to a function at a point is really nothing more than the tangent plane to that function at the point.

So, we know that we’ll first need the two 1st order partial derivatives. Here they are,

Now we also need the two derivatives from the first step and the function evaluated at  . Here are those evaluations,

The linear approximation is then,

z = 4x2 − ye
2x+y (−2, 4)

fx = 8x − 2ye
2x+y fy = −e

2x+y − ye
2x+y

(−2, 4)

f (−2, 4) = 12 fx (−2, 4) = −24 fy (−2, 4) = −5

L (x, y) = 12 − 24 (x + 2) − 5 (y − 4) = −24x − 5y − 16
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SECTION 16.4 GREEN’S THEOREM 1089

with center the origin and radius , where is chosen to be small enough that lies
inside . (See Figure 11.) Let be the region bounded by and . Then its positively
oriented boundary is and so the general version of Green’s Theorem gives

Therefore

that is,

We now easily compute this last integral using the parametrization given by
, . Thus

We end this section by using Green’s Theorem to discuss a result that was stated in the
preceding section.

SKETCH OF PROOF OF THEOREM 16.3.6 We’re assuming that is a vector field
on an open simply-connected region , that and have continuous first-order partial
derivatives, and that

If is any simple closed path in and is the region that encloses, then Green’s The-
o   rem gives

A curve that is not simple crosses itself at one or more points and can be broken up 
into a number of simple curves. We have shown that the line integrals of around these 
simple curves are all 0 and, adding these integrals, we see that for any
closed curve . Therefore is independent of path in by Theo rem 16.3.3. It fol-
lows that is a conservative vector field.

C D C C�
C � ��C��

y
C

P dx � Q dy � y
�C�

P dx � Q dy � yy
D

� �Q

�x
�

�P

�y � dA

� yy
D

� y 2 � x 2

�x 2 � y 2 �2 �
y 2 � x 2

�x 2 � y 2 �2� dA � 0

y
C

P dx � Q dy � y
C�

P dx � Q dy

y
C

F � dr � y
C�

F � dr

r�t� � a cos t i � a sin t j 0 � t � 2�

y
C

F � dr � y
C�

F � dr � y2�

0
F�r�t�� � r��t� dt

� y2�

0

��a sin t���a sin t� � �a cos t��a cos t�
a 2 cos2t � a 2 sin2t

dt � y2�

0
dt � 2�

F � P i � Q j
D P Q

�P

�y
�

�Q

�x
throughout D

C D R C

�y
C

F � dr � �y
C

P dx � Q dy � yy
R

��Q

�x
�

�P

�y � dA � yy
R

0 dA � 0

F
xC F � dr � 0

C xC F � dr D
F

C�aa

FIGURE 11

y

x
D

C

Cª

1–4 Evaluate the line integral by two methods: (a) directly and 
(b) using Green’s Theorem.

1. ,
is the circle with center the origin and radius 2

�xC �x � y� dx � �x � y� dy
C

2. ,
is the rectangle with vertices , , , and 

3. ,
is the triangle with vertices , (1, 0), and (1, 2)

�xC xy dx � x 2 dy
C �0, 0� �3, 0� �3, 1� �0, 1�

�xC xy dx � x 2 y 3 dy
C �0, 0�

16.4 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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1090 CHAPTER 16 VECTOR CALCULUS

4. ,  consists of the arc of the parabola
from to and the line segments from

to and from to 

5–10 Use Green’s Theorem to evaluate the line integral along
the given positively oriented curve.

5. ,
is the triangle with vertices , , and 

6. ,
is the rectangle with vertices , , , and 

7. ,
is the boundary of the region enclosed by the parabolas

and

8. ,  is the ellipse 

9. ,  is the circle 

10. ,  is the boundary of the
region between the circles and

11–14 Use Green’s Theorem to evaluate . (Check the 
orientation of the curve before applying the theorem.)
11.  ,

is the triangle from to to to 

12. ,
consists of the arc of the curve from

to and the line segment from to 

13. ,
is the circle oriented clockwise

14. , is the triangle from
to to to 

15–16 Verify Green’s Theorem by using a computer algebra sys-
tem to evaluate both the line integral and the double integral.
15. , ,

consists of the line segment from to
followed by the arc of the parabola from
to 

16. , ,
is the ellipse 

17. Use Green’s Theorem to find the work done by the force
in moving a particle from the 

origin along the -axis to , then along the line segment 
to , and then back to the origin along the -axis.

18. A particle starts at the point , moves along the -axis
to , and then along the semicircle to the
starting point. Use Green’s Theorem to find the work done
on this particle by the force field .

�xC x 2y 2 dx � xy dy C
�0, 0� �1, 1� �1, 1�

�0, 1�

xC xy 2 dx � 2x 2y dy
C �0, 0� �2, 2� �2, 4�

xC cos y dx � x 2 sin y dy
C �0, 0� �5, 0� �5, 2� �0, 2�

xC (y � esx ) dx � �2x � cos y 2 � dy
C
y � x 2 x � y 2

xC y 4 dx � 2xy 3 dy C

xC y 3 dx � x 3 dy C x 2 � y 2 � 4

xC �1 � y 3� dx � �x 3 � e y2
� dy C

y � x 2

�0, 1� �0, 0�

x 2 � 2y 2 � 2

x 2 � y 2 � 4 x 2 � y 2 � 9

xC F � dr

F�x, y� � �y cos x � xy sin x, xy � x cos x 	
C

F�x, y� � �e�x � y 2, e�y � x 2 	
C

F�x, y� � �y � cos y, x sin y	
�x � 3�2 � �y � 4�2 � 4C

CF�x, y� � �sx 2 � 1, tan�1 x 	

�0, 0� �0, 4� �2, 0� �0, 0�

y � cos x ���
2, 0�
��
2, 0� ��
2, 0� ���
2, 0�

�0, 0�
�1, 1� �0, 1� �0, 0�

CAS

Q�x, y� � x 2e yP�x, y� � y 2e x

�1, 1���1, 1�C

��1, 1�
�1, 1�y � 2 � x 2

Q�x, y� � x 3y 8P�x, y� � 2x � x 3y 5

4x 2 � y 2 � 4C

F�x, y� � x�x � y� i � xy 2 j
�1, 0�x

y�0, 1�

x��2, 0�
y � s4 � x 2�2, 0�

F�x, y� � �x, x 3 � 3xy 2 	

19. Use one of the formulas in to find the area under one
arch of the cycloid .

; 20. If a circle with radius 1 rolls along the outside of the 
circle , a fixed point on traces out a 
curve called an epicycloid, with parametric equations

, . Graph the epi-
cycloid and use to find the area it encloses.

21. (a) If is the line segment connecting the point to
the point , show that 

(b) If the vertices of a polygon, in counterclockwise order,
are , , show that the area of
the polygon is

(c) Find the area of the pentagon with vertices , ,
, , and .

22. Let be a region bounded by a simple closed path in the 
-plane. Use Green’s Theorem to prove that the coordi nates

of the centroid of are

where is the area of .

23. Use Exercise 22 to find the centroid of a quarter-circular
region of radius .

24. Use Exercise 22 to find the centroid of the triangle with 
vertices , , and , where and .

25. A plane lamina with constant density occupies a
region in the -plane bounded by a simple closed path .
Show that its moments of inertia about the axes are

26. Use Exercise 25 to find the moment of inertia of a circular
disk of radius with constant density about a diameter.
(Compare with Example 4 in Section 15.5.)

27. Use the method of Example 5 to calculate , where

and is any positively oriented simple closed curve that
encloses the origin.

28. Calculate , where and
is the positively oriented boundary curve of a region

that has area 6.

29. If is the vector field of Example 5, show that
for every simple closed path that does not pass through or
enclose the origin.

C
x 2 � y 2 � 16 P C

x � 5 cos t � cos 5t y � 5 sin t � sin 5t

C �x1, y1�
�x2, y2�

yC x dy � y dx � x1 y2 � x2 y1

�x1, y1 � �x2, y2 �, . . . , �xn , yn �

A � 1
2 ��x1 y2 � x2 y1 � � �x2 y3 � x3 y2 � � � � �

A � � �xn�1 yn � xnyn�1 � � �xny1 � x1 yn ��

�0, 0� �2, 1�
�1, 3� �0, 2� ��1, 1�

D C
xy

�x, y � D

x �
1

2A
�yC x 2 dy y � �

1
2A

�yC y 2 dx

A D

a

�0, 0� �a, 0� �a, b� a 	 0 b 	 0


�x, y� � 

xy C

Ix � �



3
�yC y 3 dx Iy �




3
�yC x 3 dy

a 


xC F � dr

F�x, y� �
2xy i � �y 2 � x 2� j

�x 2 � y 2�2

C

xC F � dr F�x, y� � �x 2 � y, 3x � y 2 	
C D

F xC F � dr � 0

x � t � sin t, y � 1 � cos t
5

5
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SECTION 16.4 GREEN’S THEOREM ¤ 643

36. (a) Here F(r) = r |r|3 and r = i+ j+ k. Then (r) = |r| is a potential function for F, that is, = F.

(See the discussion of gradient fields in Section 16.1.) Hence F is conservative and its line integral is independent of path.

Let 1 = ( 1 1 1) and 2 = ( 2 2 2).

= F · r = ( 2) ( 1) =
( 2
2 +

2
2 +

2
2)
1 2

+
( 2
1 +

2
1 +

2
1)
1 2

=
1

1

1

2
.

(b) In this case, = ( )

=
1

1 52× 1011
1

1 47× 1011

= (5 97× 1024)(1 99× 1030)(6 67× 10 11)( 2 2377× 10 13) 1 77× 1032 J

(c) In this case, =

=
1

10 12

1

5× 10 13
= 8 985× 109 (1) 1 6× 10 19 1012 1400 J.

16.4 Green's Theorem

1. (a) Parametric equations for are = 2cos , = 2 sin , 0 2 . Then

( ) + ( + ) =
2

0
[(2 cos 2 sin )( 2 sin ) + (2 cos + 2 sin )(2 cos )]

=
2

0
(4 sin2 + 4cos2 ) =

2

0
4 = 4

2

0
= 8

(b) Note that as given in part (a) is a positively oriented, smooth, simple closed curve. Then by Green’s Theorem,

( ) + ( + ) = ( + ) ( ) = [1 ( 1)] = 2

= 2 ( ) = 2 (2)2 = 8

2. (a) 1: = = = 0 = 0 0 3.

2: = 3 = 0 = = 0 1.

3: = 3 = = 1 = 0 0 3.

4: = 0 = 0 = 1 = 0 1

Thus + 2 =
1 + 2 + 3 + 4

+ 2 =
3

0
0 +

1

0
9 +

3

0
(3 )( 1) +

1

0
0

= 9
1

0
+ 1

2
2 3

3

0
= 9 + 9

2 9 = 9
2

(b) + 2 = ( 2) ( ) =
3

0

1

0
(2 ) =

3

0

1

0
= 1

2
2 3

0
· 1 = 9

2

3. (a) 1: = = , = 0 = 0 , 0 1.

2: = 1 = 0 , = = , 0 2.

3: = 1 = , = 2 2 = 2 , 0 1.
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644 ¤ CHAPTER 16 VECTOR CALCULUS

Thus
+ 2 3 =

1 + 2 + 3

+ 2 3

=
1

0
0 +

2

0
3 +

1

0
(1 )(2 2 ) 2(1 )2(2 2 )3

= 0 + 1
4
4 2

0
+ 2

3
(1 )3 + 8

3
(1 )6

1

0
= 4 10

3
= 2

3

(b) + 2 3 = ( 2 3) ( ) =
1

0

2

0
(2 3 )

=
1

0
1
2

4 =2

=0
=

1

0
(8 5 2 2) = 4

3
2
3
= 2

3

4. (a) 1: = = , = 2 = 2 , 0 1

2: = 1 = , = 1 = 0 , 0 1

3: = 0 = 0 , = 1 = , 0 1

Thus
2 2 + =

1+ 2+ 3

2 2 +

=
1

0
2( 2)2 + ( 2)(2 ) +

1

0
(1 )2(1)2( ) + (1 )(1)(0 )

+
1

0
(0)2(1 )2(0 ) + (0)(1 )( )

=
1

0
6 + 2 4 +

1

0
1 + 2 2 +

1

0
0

= 1
7
7 + 2

5
5 1

0
+ + 2 1

3
3 1

0
+ 0 = 1

7
+ 2

5
+ 1 + 1 1

3
= 22

105

(b) 2 2 + = ( ) ( 2 2) =
1

0

1

2

( 2 2 )

=
1

0
1
2

2 2 2 =1

= 2 =
1

0
1
2

2 1
2

4 + 6

= 1
2

1
3

3 1
10

5 + 1
7

7 1

0
= 1

2
1
3

1
10
+ 1

7
= 22

105

5. The region enclosed by is given by {( ) | 0 2 2 }, so
2 + 2 2 = (2 2 ) ( 2)

=
2

0

2
(4 2 )

=
2

0
2 =2

=

=
2

0
3 3 = 3

4
4 2

0
= 12

6. The region enclosed by is [0 5]× [0 2], so

cos + 2 sin = ( 2 sin ) (cos ) =
5

0

2

0
[2 sin ( sin )]

=
5

0
(2 + 1)

2

0
sin = 2 +

5

0
cos

2

0
= 30(1 cos 2)
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SECTION 16.4 GREEN’S THEOREM ¤ 645

7. + + (2 + cos 2) = (2 + cos 2) +

=
1

0 2 (2 1) =
1

0
( 1 2 2) = 1

3

8. 4 + 2 3 = (2 3) ( 4) = (2 3 4 3)

= 2 3 = 0

because ( ) = 3 is an odd function with respect to and is symmetric about the -axis.

9. 3 3 = ( 3) ( 3) = ( 3 2 3 2) =
2

0

2

0
( 3 2)

= 3
2

0

2

0
3 = 3(2 )(4) = 24

10. (1 3) + ( 3 +
2
) = ( 3 +

2
) (1 3) = (3 2 + 3 2)

=
2

0

3

2
(3 2) = 3

2

0

3

2
3

= 3
2

0
1
4

4 3

2
= 3(2 ) · 1

4
(81 16) = 195

2

11. F( ) = h cos sin + cos i and the region enclosed by is given by

{( ) | 0 2 0 4 2 }. is traversed clockwise, so gives the positive orientation.

F · r = ( cos sin ) + ( + cos ) = ( + cos ) ( cos sin )

= ( sin + cos cos + sin ) =
2

0

4 2

0

=
2

0
1
2

2 =4 2

=0
=

2

0
1
2
(4 2 )2 =

2

0
(8 8 + 2 2) = 8 4 2 + 2

3
3 2

0

= 16 16 + 16
3

0 = 16
3

12. F( ) = + 2 + 2 and the region enclosed by is given by {( ) | 2 2 0 cos }.
is traversed clockwise, so gives the positive orientation.

F · r = + 2 + + 2 = + 2 + 2

=
2

2

cos

0
(2 2 ) =

2

2
2 2 =cos

=0

=
2

2
(2 cos cos2 ) =

2

2
2 cos 1

2 (1 + cos 2 )

= 2 sin + 2 cos 1
2

+ 1
2
sin 2

2

2
[integrate by parts in the first term]

= 1
4

1
4

= 1
2

13. F( ) = h cos sin i and the region enclosed by is the disk with radius 2 centered at (3 4).

is traversed clockwise, so gives the positive orientation.

F · r = ( cos ) + ( sin ) = ( sin ) ( cos )

= (sin 1 sin ) = = area of = (2)2 = 4
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646 ¤ CHAPTER 16 VECTOR CALCULUS

14. F( ) = 2 + 1 tan 1 and the region enclosed by is given by {( ) | 0 1 1}.
is oriented positively, so

F · r = 2 + 1 + tan 1 = tan 1 ( 2 + 1)

=
1

0

1 1

1 + 2
0 =

1

0

1

1 + 2
[ ] =1= =

1

0

1

1 + 2
(1 )

=
1

0

1

1 + 2 1 + 2
= tan 1 1

2
ln(1 + 2)

1

0

=
4

1

2
ln 2

15. Here = 1 + 2 where

1 can be parametrized as = , = 1, 1 1, and

2 is given by = , = 2 2, 1 1.

Then the line integral is

1+ 2

2 + 2 =
1

1
[1 · + 2 · 0]
+

1

1
[(2 2)2 ( 1) + ( )2 2 2

( 2 )]

=
1

1
[ (2 2)2 2 3 2 2

] = 8 + 48 1

according to a CAS. The double integral is

=
1

1

2 2

1

(2 2 ) = 8 + 48 1, verifying Green’s Theorem in this case.

16. We can parametrize as = cos , = 2 sin , 0 2 . Then the line integral is

+ =
2

0
2 cos (cos )3(2 sin )5 ( sin ) +

2

0
(cos )3(2 sin )8 · 2 cos

=
2

0
[ 2 cos sin + 32 cos3 sin6 + 512 cos4 sin8 ] = 7 ,

according to a CAS. The double integral is =
1

1

4 4 2

4 4 2

(3 2 8 + 5 3 4) = 7 .

17. By Green’s Theorem, = F · r = ( + ) + 2 = ( 2 ) where is the path described in the

question and is the triangle bounded by . So

=
1

0

1

0
( 2 ) =

1

0
1
3

3 =1

=0
=

1

0
1
3
(1 )3 (1 )

= 1
12
(1 )4 1

2
2 + 1

3
3 1

0
= 1

2
+ 1

3
1
12

= 1
12

18. By Green’s Theorem, = F · r = + ( 3 + 3 2) = (3 2 + 3 2 0) , where is the semicircular

region bounded by . Converting to polar coordinates, we have = 3
2

0 0
2 · = 3 1

4
4 2

0
= 12 .

19. Let 1 be the arch of the cycloid from (0 0) to (2 0), which corresponds to 0 2 , and let 2 be the segment from

(2 0) to (0 0), so 2 is given by = 2 , = 0, 0 2 . Then = 1 2 is traversed clockwise, so is
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SECTION 16.9 THE DIVERGENCE THEOREM 1133

Another application of the Divergence Theorem occurs in fluid flow. Let be
the velocity field of a fluid with constant density . Then is the rate of flow per
unit area. If is a point in the fluid and is a ball with center and very small
radius , then for all points in since is continuous. We approx-
imate the flux over the boundary sphere as follows:

This approximation becomes better as and suggests that

Equation 8 says that is the net rate of outward flux per unit volume at . (This
is the reason for the name divergence.) If , the net flow is outward near and

is called a source. If , the net flow is inward near and is called a sink.
For the vector field in Figure 4, it appears that the vectors that end near are shorter

than the vectors that start near Thus the net flow is outward near so
and is a source. Near on the other hand, the incoming arrows are longer than the 
outgoing arrows. Here the net flow is inward, so and is a sink. We 
can use the formula for F to confirm this impression. Since , we have

, which is positive when . So the points above the line 
are sources and those below are sinks.

yy
Sa

F � dS � yyy
Ba

div F dV � yyy
Ba

div F�P0 � dV � div F�P0 �V�Ba �

a l 0

8 div F�P0 � � lim
al 0

1

V�Ba � yy
Sa

F � dS

div F�P0 � P0

div F�P� � 0 P
P div F�P� � 0 P P

P1

P1. P1, div F�P1� � 0
P1 P2,

div F�P2 � � 0 P2

F � x 2 i � y 2 j
div F � 2x � 2y y � �x y � �x

Sa

� F � �v
P0�x0, y0, z0 � Ba P0

a div F�P� � div F�P0 � Ba div F

v�x, y, z�

1–4 Verify that the Divergence Theorem is true for the vector field
on the region .

1. ,
is the cube bounded by the planes , , ,

, , and 

2. ,
is the solid bounded by the paraboloid 

and the -plane

3. ,
is the solid ball 

4. ,
is the solid cylinder , 

5–15 Use the Divergence Theorem to calculate the surface integral
; that is, calculate the flux of across .

5. ,
is the surface of the box bounded by the coordinate planes

and the planes , , and 

6. ,
is the surface of the box enclosed by the planes , 

, , , , and , where , , and are
positive numbers

F E

F�x, y, z� � 3x i � xy j � 2xz k
E x � 0 x � 1 y � 0
y � 1 z � 0 z � 1

F�x, y, z� � x 2 i � xy j � z k
E z � 4 � x 2 � y 2

xy

F�x, y, z� � �z, y, x �
E x 2 � y 2 � z 2 � 16

F�x, y, z� � �x 2, �y, z�
E y 2 � z2 � 9 0 � x � 2

SFxx
S
F � dS

F�x, y, z� � xyez i � xy 2z3 j � yez k
S

z � 1y � 2x � 3

F�x, y, z� � x 2yz i � xy 2z j � xyz2 k
x � 0S

cbaz � cz � 0y � by � 0x � a

7. ,
is the surface of the solid bounded by the cylinder

and the planes and 

8. ,
is the sphere with center the origin and radius 2

9. ,
is the “fat sphere” 

10. ,
is the surface of the tetrahedron enclosed by the coordinate

planes and the plane

where , , and are positive numbers

11. ,
is the surface of the solid bounded by the paraboloid

and the plane 

12. ,
is the surface of the solid bounded by the cylinder

and the planes and 

13. , where ,
consists of the hemisphere and the disk

in the -plane

F�x, y, z� � 3xy 2 i � xe z j � z3 k
S
y 2 � z2 � 1 x � �1 x � 2

F�x, y, z� � �x 3 � y 3� i � �y 3 � z3� j � �z3 � x 3� k
S

F�x, y, z� � x 2sin y i � x cos y j � xz sin y k
S x 8 � y 8 � z8 � 8

F�x, y, z� � z i � y j � zx k
S

x

a
�

y

b
�

z

c
� 1

a b c

F�x, y, z� � �cos z � xy 2� i � xe�z j � �sin y � x 2z� k
S
z � x 2 � y 2 z � 4

F�x, y, z� � x 4 i � x 3z 2 j � 4xy 2z k
S
x 2 � y 2 � 1 z � x � 2 z � 0

F � � r � r r � x i � y j � z k
S z � s1 � x 2 � y 2

x 2 � y 2 � 1 xy

16.9 Exercises

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

FIGURE 4
The vector field F=≈ i+¥ j

P¡

P™

y

x
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SECTION 16.9 THE DIVERGENCE THEOREM ¤ 689

16.9 The Divergence Theorem

1. divF = 3 + + 2 = 3 + 3 , so

divF =
1

0

1

0

1

0
(3 + 3) = 9

2 (notice the triple integral is

three times the volume of the cube plus three times ).

To compute F · S, on

1: n = i, F = 3 i+ j+ 2 k, and
1
F · S =

1
3 = 3;

2: F = 3 i+ j+ 2 k, n = j and
2
F · S =

2
= 1

2
;

3: F = 3 i+ j+ 2 k, n = k and
3
F · S =

3
2 = 1;

4: F = 0,
4
F · S = 0; 5: F = 3 i+ 2 k, n = j and

5
F · S =

5
0 = 0;

6: F = 3 i+ j, n = k and
6
F · S =

6
0 = 0. Thus F · S = 9

2
.

2. divF = 2 + + 1 = 3 + 1 so

divF = (3 + 1) =
2

0

2

0

4 2

0
(3 cos + 1)

=
2

0

2

0
(3 cos + 1)(4 2)

=
2

0
(4 2) 3 sin +

=2

=0

= 2
2

0
(4 3) = 2 2 2 1

4
4 2

0

= 2 (8 4) = 8

On 1: The surface is = 4 2 2 2 + 2 4, with upward orientation, and F = 2 i+ j+ (4 2 2)k. Then

1
F · S= [ ( 2)( 2 ) ( )( 2 ) + (4 2 2)]

= 2 ( 2 + 2) + 4 ( 2 + 2) =
2

0

2

0
(2 cos · 2 + 4 2)

=
2

0
2
5

5 cos + 2 2 1
4

4 =2

=0
=

2

0
64
5
cos + 4 = 64

5
sin + 4

2

0
= 8

On 2: The surface is = 0 with downward orientation, so F = 2 i+ j, n = k and
2
F · n =

2
0 = 0.

Thus F · S =
1
F · S+

2
F · S = 8 .

3. divF = 0 + 1 + 0 = 1, so divF = 1 = ( ) = 4
3 · 43 = 256

3 . is a sphere of radius 4 centered at

the origin which can be parametrized by r( ) = h4 sin cos 4 sin sin 4 cos i, 0 , 0 2 (similar to

Example 16.6.10). Then

r × r = h4 cos cos 4 cos sin 4 sin i × h 4 sin sin 4 sin cos 0i
= 16 sin2 cos 16 sin2 sin 16 cos sin

and F(r( )) = h4 cos 4 sin sin 4 sin cos i. Thus
F · (r × r ) = 64 cos sin2 cos + 64 sin3 sin2 + 64 cos sin2 cos = 128 cos sin2 cos + 64 sin3 sin2

and
F · S = F · (r × r ) =

2

0 0
(128 cos sin2 cos + 64 sin3 sin2 )

=
2

0
128
3
sin3 cos + 64 1

3
(2 + sin2 ) cos sin2

=

=0

=
2

0
256
3
sin2 = 256

3
1
2

1
4
sin 2

2

0
= 256

3
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690 ¤ CHAPTER 16 VECTOR CALCULUS

4. divF = 2 1 + 1 = 2 , so

divF =

2+ 2 9

2

0

2 =

2+ 2 9

4 = 4(area of circle) = 4( · 32) = 36

Let 1 be the front of the cylinder (in the plane = 2), 2 the back (in the -plane), and 3 the lateral surface of the cylinder.

1 is the disk = 2, 2 + 2 9. A unit normal vector is n = h1 0 0i and F = h4 i on 1, so

1
F · S =

1
F · n =

1
4 = 4(surface area of 1) = 4( · 32) = 36 . 2 is the disk = 0, 2 + 2 9.

Here n = h 1 0 0i and F = h0 i, so
2
F · S =

2
F · n =

2
0 = 0.

3 can be parametrized by r( ) = h 3 cos 3 sin i, 0 2, 0 2 . Then

r × r = h1 0 0i × h0 3 sin 3 cos i = h0 3 cos 3 sin i. For the outward (positive) orientation we use

(r × r ) and F(r( )) = 2 3 cos 3 sin , so

3
F · S = F · ( (r × r )) =

2

0

2

0
(0 9 cos2 + 9 sin2 )

= 9
2

0

2

0
cos 2 = 9 (2) 1

2
sin 2

2

0
= 0

Thus F · S = 36 + 0 + 0 = 36 .

5. divF = ( ) + ( 2 3) + ( ) = + 2 3 = 2 3, so by the Divergence Theorem,

F · S= divF =
3

0

2

0

1

0
2 3 = 2

3

0

2

0

1

0
3

= 2 1
2

2 3

0
1
2

2 2

0
1
4

4 1

0
= 2 9

2
(2) 1

4
= 9

2

6. divF = ( 2 ) + ( 2 ) + ( 2) = 2 + 2 + 2 = 6 , so by the Divergence Theorem,

F · S= divF =
0 0 0

6 = 6
0 0 0

= 6 1
2

2
0

1
2

2
0

1
2

2
0
= 6 1

2
2 1

2
2 1

2
2 = 3

4
2 2 2

7. divF = 3 2 + 0 + 3 2, so using cylindrical coordinates with = cos , = sin , = we have

F · S= (3 2 + 3 2) =
2

0

1

0

2

1
(3 2 cos2 + 3 2 sin2 )

= 3
2

0

1

0
3 2

1
= 3(2 ) 1

4
(3) = 9

2

8. divF = 3 2 + 3 2 + 3 2, so by the Divergence Theorem,

F · S= 3( 2 + 2 + 2) =
0

2

0

2

0
3 2 · 2 sin = 3

0
sin

2

0

2

0
4

= 3 [ cos ]0 [ ]
2
0

1
5

5 2

0
= 3 (2) (2 ) 32

5
= 384

5

9. divF = 2 sin sin sin = 0, so by the Divergence Theorem, F · S = 0 = 0.
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0.1 Worked out Solutions for all Assessment
Tools
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0.1.1 Solution for Quiz I



Name—————————————–, ID ———————–

Calculus III MTH 203 Fall 2021, 1–1 © copyright Ayman Badawi 2021

Quiz I , MTH 203 , Fall 2021

Ayman Badawi

QUESTION 1. Convince me that L1 : x = 3t + 1, y = t � 2, z = �4t + 2 (t 2 R) is perpendicular to L2 : x =
2w, y = 2w � 5, z = 2w � 6 (w 2 R).

QUESTION 2. Is the line L1 : x = 3t + 1, y = t � 2, z = �4t + 2 (t 2 R) parallel to L2 : x = 6w � 5, y =
2w � 4, z = �8w + 11 (w 2 R)? EXPLAIN WHY YES or WHY NO.

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail:

Meriam Mkadmi 83776

I first condition : D , o Dz = O -

D
,=L 3 , I , -4> and Dz= L2 , 2,2>

D
,
. Dz = (3 ,

I
,
-4> or L2 ,2,2>

=3 (2) +112) -4 (2) = O
V

2 Second condition : L , and Lz intersect

check if × in L , = X in
L2

y in L , = y
in L2

Z in L , = z
in Lz .

X : 3T -11=2w -p t = I

y : t -2=2w -S -D W = 2

z : -4T -12 I 2W - 6 ✓
- 2 = - 2

equation for z is satisfied by t and W
-

Both conditions are met
,
therefore

,

L
,
I Lz .
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Name—————————————–, ID ———————–

Calculus III MTH 203 Fall 2021, 1–1 © copyright Ayman Badawi 2021

Quiz I , MTH 203 , Fall 2021

Ayman Badawi

QUESTION 1. Convince me that L1 : x = 3t + 1, y = t � 2, z = �4t + 2 (t 2 R) is perpendicular to L2 : x =
2w, y = 2w � 5, z = 2w � 6 (w 2 R).

QUESTION 2. Is the line L1 : x = 3t + 1, y = t � 2, z = �4t + 2 (t 2 R) parallel to L2 : x = 6w � 5, y =
2w � 4, z = �8w + 11 (w 2 R)? EXPLAIN WHY YES or WHY NO.

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail:

① First condition : D
,
=cDz

D
,=L 3

,
I
,
-4) and Dz = (6,2 ,

-8>

3=6 c -D C = 112

' = " is:} I Either .- 4 = - 8C
✓

2 Second condition : L
, does not intersect Lz .

Let's see if the point ( i , -2,2) ,
which

lies on Li
,
does not lie on L2 '

L2 : I = low -S -D w = I

g
not satisfied

-2=2w - 4 -p w = , by the
same w .

2 = - 8W -111-D w = 918

Since the point ( I , -2,2) does not lie

on Lz , we can confirm that they are

not the same line .

Both conditions are met , therefore

L
,
11 Lz .
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0.1.2 Solution for Quiz II



Name—————————————–, ID ———————–

Calculus III MTH 203 Fall 2021, 1–1 © copyright Ayman Badawi 2021

Quiz II , MTH 203 , Fall 2021

Ayman Badawi

QUESTION 1. Does the line L : x = −t+ 2, y = 2t+ 6, z = 3t− 2(t ∈ R) intersect the plane P : x+ y+ 2z = 25.
If yes, then find the point of intersection.

QUESTION 2. Can we draw the vector v =< 2,−4,−3 > inside the plane P : x+ y − 2z = 12 ? explain

QUESTION 3. Does the plane P1 : x+ 2y + z = 5 intersect the plane P2 : −x− y + 3z = −2? If yes, the find the
parametric equations of line of intersection.

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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0.1.3 Solution for Quiz III



Name—————————————–, ID ———————–

Calculus III MTH 203 Fall 2021, 1–1 © copyright Ayman Badawi 2021

Quiz III , MTH 203 , Fall 2021

Ayman Badawi

QUESTION 1. Find all critical points of the function f(x, y) = yx2 − 2x2 − y2. Then classify each critical point as 
local Max/Min or Saddle or neither.

Solution:
F_x =  2xy - 4x = 0,   2x(y - 2) = 0,  y = 2  or  x = 0  (1)

F_y =  x^2 - 2y = 0.     y =  x^2/2. (2)

assume x = 0, then  by  (Eq (2), we have  y = 0,  (0, 0)

In eq(2) we set  y = 2, solve for x .  2  =  x^2/2,  4 = x^2,  x = 2, -2.  Hence  we get  (2, 2), (-2, 2)

Critical points:   (0, 0), (2, 2)  and  (-2, 2) 

f_xx =  2y - 4, f_yy =  -2 , f_xy =  2x 

(0, 0):   fxx(0, 0)  =  -4, fyy(0,0) = -2, fxy(0, 0) = 0.
D =  fxx(0, 0)fyy(0,0) -  fxy(0, 0)^2  =  8,  f_xx(0, 0) <0,  we  have local  max  at  (0, 0) 

(2, 2):   fxx(2, 2) =   0, fyy(2, 2) =  -2, fxy(2, 2) = 4.  D  =  -16 <0  ,  saddle point at  (2, 2)
(-2, 2):   fxx(-2, 2) = 0, fyy(-2, 2) = -2, fxy(-2,2) = -4.  D  = -16 <0, saddle point at  (-2, 
2)

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

149



150 TABLE OF CONTENTS

0.1.4 Solution for Quiz IV
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0.1.5 Solution for Quiz V
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0.1.6 Solution for Quiz VI



Name—————————————–, ID ———————–

Calculus III MTH 203 Fall 2021, 1–2 © copyright Ayman Badawi 2021

Quiz VI, MTH 203 , Fall 2021

Ayman Badawi

SHOW THE WORK, SUBMIT by 2:35pm
QUESTION 1. See the below picture. A force F (x, y) =< yeyx − 2x, xeyx + 4y3 > is acting on a particle in order
to move it from the point A = (−2, 0) to the point e = (0,−4) along the curve C that consists of C1 part of the circle
x2 + y2 = 4, C2 the line segment between B and c, C3 the line segment between c and d, and C4 the line segment
between d and e. Find the work done by the force F (x, y).

Solution: fx = yexy − 2x, hence fxy = exy + xyexy. fy = xexy + 4y3, thus fyx = exy + xyexy. Hence
fxy = fyx and therefore F is conservative. So, the line integral does not depend on the path. So the answer is
K(terminal point) −K(initial point), where Kx = fx and Ky = fy. To find K(x, y). We do the following (as
in class):

∫
fx dx =

∫
yexy − 2x dx = exy − x2

∫
fy dy =

∫
xexy + 4y3 dy = exy + y4

Now K(x, y) = all terms of
∫
fx dx + the terms in

∫
fy dy that are MISSING in

∫
fx dx

Hence K(x, y) = exy − x2 + y4.
Thus the work =

∫
C
F.dr = K(0,−4)−K(−2, 0) = e0 + 0 + 256− (e0 − 4 + 0) = 260

QUESTION 2. See the below picture. A force F (x, y) =< −2y, 2
3x

√
y2 + 9 > is acting on a particle in order to

move it from the point A = (0.0) then back to the same point A along the curve C that consists of C1 part of the the
line y = 0.5x between A and B, C2 part of the line y = 4 between B and C, and C3 part of the y-axis between C and
A. Use Green’s Theorem to find the work done by the force F (x, y). [Hint: Is dxdy or dydx easier?]

Solution: By staring,
∫ ∫
−−− dxdy is easier. Ok, we use Green’s Theorem:

fx = −2y, so fxy = −2. fy = 2
3x

√
y2 + 9, so fyx = 2

3

√
y2 + 9. Since C is closed simple arc, Green’theorem

says
∫
C
F.dr =

∫
C1
F.dr +

∫
C2
F.dr +

∫
C3
F.dr =

∫ y=4
y=0

∫ x=2y
x=0 fyx − fxy dxdy.

∫ y=4

y=0

∫ x=2y

x=0

2
3

√
y2 + 9 + 2dxdy

. ∫ x=2y
x=0

2
3

√
y2 + 9 + 2 dx =

∫ x=2y
x=0

2
3

√
y2 + 9 dx+

∫ x=2y
x=0 2dx = 2

3x
√
y2 + 9 + 2x|x=2y

x=0 = 4y
3

√
y2 + 9 + 4y

Now
∫ y=4
y=0

4y
3

√
y2 + 9 + 4y dy =

∫ y=4
y=0

4y
3

√
y2 + 9 +

∫ y=4
y=0 4y dy

For
∫ y=4
y=0

4y
3

√
y2 + 9 dy we use substitution
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Let u = y2 + 9. Then du = 2ydu and u is between 9 and 25. Hence we have
∫ u=25
u=9

2
3u

0.5 du = 4
9u

3
2 |u=25
u=9 =

4
9(125− 27) = 392

9

Also,
∫ y=4
y=0 4y dy = 2y2|y=4

y=0 = 32.
Thus the answer is 392

9 + 32 = 392+288
9 = 680

9

QUESTION 3. Find the surface area of the part of f(x, y) = x2

2
√

2
+ y2

2
√

2
defined over the region in the first quadrant

of the xy-plane bounded by x2 + y2 ≤ 4 and x2 + y2 ≥ 1, see picture.

Solution: The region is between the two circles (as in the picture), so POLAR is recommended. By staring
at the region, we realize that 1 ≤ r ≤ 2 and 0 ≤ θ ≤ π/2 Let f(x, y) = z = x2

2
√

2
+ y2

2
√

2
.

Surface Area =
∫ θ=π/2
θ=0

∫ r=2
r=1

√
1 + f2

x + f2
y rdrdθ.

Now we must write
√

1 + f2
x + f2

y in terms of r and θ (since the integration is in terms of drdθ)

Thus
√

1 + f2
x + f2

y =
√

1 + 0.5x2 + 0.5y2 =
√

1 + 0.5(x2 + y2) =
√

1 + 0.5r2 (note that every point (x, y)
between the two circles satisfies x2 + y2 = r2, where 1 ≤ r ≤ 2)

Thus the surface area =
∫ θ=π/2
θ=0

∫ r=2
r=1

√
1 + 0.5r2 rdrdθ.

For
∫ r=2
r=1

√
1 + 0.5r2 rdrd we use substitution. Let u = 1 + 0.5r2. Hence du = rdr and u is between 1.5 and

3. Thus
∫ u=3
u=1.5 u

0.5 du = 2
3u

3
2 |u=3
u=1.5 =

2
3(3

1.5 − 1.51.5)
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Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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0.1.7 Solution for Exam I
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0.1.9 Solution for Final Exam
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0.2 QUIZZES
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0.2.1 Quiz I



Name—————————————–, ID ———————–

Calculus III MTH 203 Fall 2021, 1–1 © copyright Ayman Badawi 2021

Quiz I , MTH 203 , Fall 2021

Ayman Badawi

QUESTION 1. Convince me that L1 : x = 3t + 1, y = t − 2, z = −4t + 2 (t ∈ R) is perpendicular to L2 : x =
2w, y = 2w − 5, z = 2w − 6 (w ∈ R).

QUESTION 2. Is the line L1 : x = 3t + 1, y = t − 2, z = −4t + 2 (t ∈ R) parallel to L2 : x = 6w − 5, y =
2w − 4, z = −8w + 11 (w ∈ R)? EXPLAIN WHY YES or WHY NO.

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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0.2.2 Quiz II



Name—————————————–, ID ———————–

Calculus III MTH 203 Fall 2021, 1–1 © copyright Ayman Badawi 2021

Quiz II , MTH 203 , Fall 2021

Ayman Badawi

QUESTION 1. Does the line L : x = −t+ 2, y = 2t+ 6, z = 3t− 2(t ∈ R) intersect the plane P : x+ y+ 2z = 25.
If yes, then find the point of intersection.

QUESTION 2. Can we draw the vector v =< 2,−4,−3 > inside the plane P : x+ y − 2z = 12 ? explain

QUESTION 3. Does the plane P1 : x+ 2y + z = 5 intersect the plane P2 : −x− y + 3z = −2? If yes, the find the
parametric equations of line of intersection.

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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0.2.3 Quiz III



Name—————————————–, ID ———————–

Calculus III MTH 203 Fall 2021, 1–1 © copyright Ayman Badawi 2021

Quiz III , MTH 203 , Fall 2021

Ayman Badawi

QUESTION 1. Find all critical points of the function f(x, y) = yx2 − 2x2 − y2. Then classify each critical point as
local Max/Min or Saddle or neither.

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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0.2.4 Quiz IV



Name—————————————–, ID ———————–

Calculus III MTH 203 Fall 2021, 1–1 © copyright Ayman Badawi 2021

Quiz IV , MTH 203 , Fall 2021

Ayman Badawi

QUESTION 1. Let f(x, y) = ye(x−4) + x
√
y + 2x.

(i) Let a = f(4, 1). Find a

(ii) Find fx and fy.

(iii) Let P be the tangent plane to f(x, y) at the point (4, 1, a). Let N be a vector that is perpendicular to P . Find N .

(iv) Find the equation of P , where P is as in (iii).

(v) Use the concept of the tangent plane to approximate f(4.2, 0.8)

QUESTION 2. A solid object has a a triangular base that is bounded by y = x and y = −x (see PICTURE). Note
that −2 ≤ x ≤ 2 and 0 ≤ y ≤ 2. The height is determined by the function f(x, y) = e

√
4−y2 . Find the volume of

such object.

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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0.2.5 Quiz V



Name—————————————–, ID ———————–

Calculus III MTH 203 Fall 2021, 1–1 © copyright Ayman Badawi 2021

Quiz V , MTH 203 , Fall 2021

Ayman Badawi

SHOW THE WORK, SUBMIT by 2:35pm
QUESTION 1. See the below picture. A force F (x, y) =< −y, x > is acting on a particle in order to move it from
the point A to the point B along the ellipse x2 + 4y2 = 16. Find the work done by the force F (x, y). [Hint: you do
not need to find A, B].

QUESTION 2. The height of a curtain is determine by f(x, y) = e2x + 5y2 defined over the curve y = ex, 0 ≤ x ≤
ln(5). Find the surface area of the curtain.

QUESTION 3. Evaluate the integral

∫
C(1 + 2y)dy, where the curve C is y = ex

2
, 0 ≤ x ≤ 1

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

202



TABLE OF CONTENTS 203

0.2.6 Quiz VI



Name—————————————–, ID ———————–

Calculus III MTH 203 Fall 2021, 1–1 © copyright Ayman Badawi 2021

Quiz VI, MTH 203 , Fall 2021

Ayman Badawi

SHOW THE WORK, SUBMIT by 2:35pm
QUESTION 1. See the below picture. A force F (x, y) =< yeyx − 2x, xeyx + 4y3 > is acting on a particle in order
to move it from the point A = (−2, 0) to the point e = (0,−4) along the curve C that consists of C1 part of the circle
x2 + y2 = 4, C2 the line segment between B and c, C3 the line segment between c and d, and C4 the line segment
between d and e. Find the work done by the force F (x, y).

QUESTION 2. See the below picture. A force F (x, y) =< −2y, 2
3x

√
y2 + 9 > is acting on a particle in order to

move it from the point A = (0.0) then back to the same point A along the curve C that consists of C1 part of the the
line y = 0.5x between A and B, C2 part of the line y = 4 between B and C, and C3 part of the y-axis between C and
A. Use Green’s Theorem to find the work done by the force F (x, y). [Hint: Is dxdy or dydx easier?]

QUESTION 3. Find the surface area of the part of f(x, y) = x2

2
√

2
+ y2

2
√

2
defined over the region in the first quadrant

of the xy-plane bounded by x2 + y2 ≤ 4 and x2 + y2 ≥ 1, see picture.

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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0.3 Exams
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0.3.1 Exam I



Name—————————————–, ID ———————–

Calculus III MTH 203 Fall 2021, 1–1 © copyright Ayman Badawi 2021

Exam I , MTH 203 , Fall 2021

Ayman Badawi

(IMPORTANT: STOP WORKING at 7:40 pm, Go to assessment, you will find a folder SUBMIT EXAM
ONE, Submit your solution as a PDF file, Max by 7:55 pm)

Score = 62

QUESTION 1. (6 points) Given Z = f(x, y) = 36y
9x4+1 is defined over the arc C : y = x3, where 0 ≤ x ≤ 1. Find

the surface area of the curtain that is determined by f(x, y) and the ARC C. [Hint: Note that Z = f(x, y) ≥ 0].
Show all steps that you used in evaluating the integral. You may use a calculator at the end (i.e., last step ONLY, in
order to come up with the answer)

QUESTION 2. (6 points, SHOW THE WORK) Given Z = f(x, y) = x
√
y + 1 is defined over the region bounded

by the positive x-axis, y = x, and 0 ≤ x ≤ 1. Find the volume of such object. [Hint: Note that Z = f(x, y) ≥ 0].
Show all steps that you used in evaluating the integral. You may use a calculator at the end (i.e., last step ONLY, in
order to come up with the answer)

QUESTION 3. (10 points, SHOW THE WORK) Given Z = f(x, y) = 5x− 8y + 2xy − x2 + 1
3y

3

(i) Find all critical points of f(x, y).

(ii) Classify each critical point as local max., local min., saddle point, or neither.

QUESTION 4. (8 points, SHOW THE WORK) Find the absolute maximum and the absolute minimum of f(x, y) =
x2 + 12x − y2 + 6 over the bounded region x2 + y2 ≤ 25. [Hint: the region consists of all points inside the circle
x2 + y2 = 25 including the points on the circle x2 + y2 = 25].

QUESTION 5. (6 points, SHOW THE WORK) Given P1 : 2x+ 4y+ 5z = 6 and P2 : 6x+ ay+ bz = c such that
P1 is parallel to P2. Find all possible values of a, b, c.

QUESTION 6. (8 points, SHOW THE WORK) The plane 4x+11y−5z = −3 intersects the plane−2x−5y−z = 3
in a line L. Find a parametric equations of L.

QUESTION 7. (i) (2 points) Is 4x2 + 9y2 + z2 = 25 a sphere or ellipsoid or a cone? Explain briefly

(ii) (2 points) Is x2 + y2 = 9 a cylinder of finite height? or a sphere of infinite radius? or neither? explain briefly

(iii) (2 points) Given (3,−5, 6) is a local maximal point of f(x, y). Find the equation of the tangent plane at
(3,−5, 6)[ Hint: pause, think! trust me it is not difficult]

(iv) Let f(x, y) = 3xy + x2 −√y + x3y. Let a = f(1, 4).

(1) Find a. (1 point)

(2) (5 points) Find the equation of the tangent plane to f(x, y) at (1, 4, a).

(3)(2 points) Use the concept of the tangent plane to approximate f(0.8, 4.01)

QUESTION 8. (4 points, SHOW THE WORK) Use the concept of partial order to find dy/dx, where y2e5x +
xsin(3y) + x2 + xy3 + 10 = 0

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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0.3.2 Exam II



Name—————————————–, ID ———————–

Calculus III MTH 203 Fall 2021, 1–2 © copyright Ayman Badawi 2021

Exam II , MTH 203 , Fall 2021

Ayman Badawi

(IMPORTANT: STOP WORKING at 10:40 pm, Go to assessment, you will find a folder SUBMIT EXAM
TWO, Submit your solution as a PDF file,by 10:55 pm, as at most. I will not receive solutions by EMAIL)

Score = 36

QUESTION 1. (6 points, SHOW THE WORK) Given F (x, y, z) =< −1
3 y, 5

9x, zy > defined over the upper-half
of the sphere S : x2 + y2 + z2 = 9 (i.e., 0 ≤ z ≤ 3). Assume that S is oriented upward. Use Stoke’s Theorem to
evaluate

∫ ∫
S
Curl(F ) · dS . [Hint: Find the (familiar) curve C that is surrounding the upper half sphere!]

QUESTION 2. (6 points, SHOW THE WORK) Given F (x, y, z) =< −1
2 xz, yx, zy > defined over the portion of

the plane S : z = x + 2y oriented upward that is bounded by the triangular curve C positively oriented (i.e., ccw)
with vertices (2, 0, 2), (3, 1, 5), (1, 1, 3). Use Stoke’s Theorem to find

∫
C
F · dr. [hint: in order to find the region D

in the xy-plane, project the vertices of the triangle over the xy-plane (i.e., let z = 0), then stare at the region D inside
the triangle]

QUESTION 3. (6 points, SHOW THE WORK) The density function of an object is given by d(x, y) =
√

1 + x+ y.
The surface of th object has the shape that is determined by z = 2

3x
3
2 + 2

3y
3
2 defined over the region D (see picture

below) in the first quadrant of the xy-plane where x2 + y2 ≤ 4 and x2 + y2 ≥ 1. Find the mass of such object. [Hint:
Note that the mass is

∫ ∫
D
d(x, y)dS]

QUESTION 4. (6 points, SHOW THE WORK) See the below picture. A force

F (x, y) =< (y − 3)
√

x(y − 3) + 1, x
√
x(y − 3) + 1 >

is acting on a particle in order to move it from the point A = (3, 4) to the point B = (0, 3 + e−3) along the curve
C : y = 3 + e(x−3) ( clockwise). Find the work done by the force F (x, y).
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QUESTION 5. (6 points, SHOW THE WORK) See the below picture. A force F (x, y) =< x2+x+1, 3
2x

√
y

3
2 + 1 >

is acting on a particle in order to move it from the point A = (0, 1) then back to the point A along the curve C (counter
clockwise) that consists of C1: part of the line y = 1 from A to B = (1, 1), C2: part of the curve y = x2 from B to
C = (2, 4), C3: part of y = 4 from C to D = (0, 4), and C4: part of the y-axis from D to A. Use Green’s Theorem
to Find the work done by the force F (x, y).

QUESTION 6. (6 points, SHOW THE WORK) Let F =< x2 + 1, z2 + 1, 2zy + 1 >

(i) Find Curl(F). Is F conservative?

(ii) Assume that the given F is a force that is acting on a particle in order to move it from A = (1, 1, 1) to the point
B = (4, 3, 2) along the curve r(t) =< t, 2

√
t − 1,

√
t >. Find the work done by F . See the picture of r(t)

below

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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0.3.3 Final Exam



Name—————————————–, ID ———————–

Calculus III MTH 203 Fall 2021, 1–2 © copyright Ayman Badawi 2021

Final Exam , MTH 203 , Fall 2021

Ayman Badawi

(IMPORTANT: STOP WORKING at 4:00 pm, Go to assessment, you will find a folder SUBMIT Final
Exam, Submit your solution as a PDF file,by 04:12 pm, as at most. I will not receive solutions by EMAIL)

Score = 50

QUESTION 1. (6 points, SHOW THE WORK) Given F (x, y, z) =< y2x, x2y, 1
3z

3 > defined over the solid upper-
half of the sphere S : x2 + y2 + z2 = 4 (i.e., 0 ≤ z ≤ 2). Assume that S is oriented upward and closed from the
bottom by the plane z = 0. Use the Divergence’s Theorem to find the flux through the given solid upper half sphere
(i.e.,

∫ ∫
S
F (x, y, z) · dS).

QUESTION 2. (6 points, SHOW THE WORK)

(i) Show thatLim(x,y)→(5,2)
2e(2x−5y)−y

2x−5y does not exist.

(ii) GivenLim(x,y)→(4,3)
3√3y−2x −1

2x−3y+1 exists. What is it?

QUESTION 3. (6 points, SHOW THE WORK) The density function of an object is given by d(x, y) = x+ y. The
surface of th object is determined by z = 8 − 2x2 − 2y2 above the xy-plane (see picture). Find the mass of such
object. [Hint: Note that the mass is

∫ ∫
D
d(x, y) dS]

QUESTION 4. (6 points, SHOW THE WORK) See the below picture. A force F (x, y) =< e(x
2+1), xe(y

3+3y) > is
acting on a particle in order to move it from the point A = (0, 0) then back to the point A along the curve C (counter
clockwise) that consists of C1: part of the x-axis from A to B = (1, 0), C2: part of the curve y =

√
x− 1 from B to

C = (5, 2), C3: part of y = 2 from C to D = (0, 2), and C4: part of the y-axis from D to A. Use Green’s Theorem
to Find the work done by the force F (x, y).
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QUESTION 5. (6 points, SHOW THE WORK) Given f(x, y) =
√
x2 + y2 + 4.

(i) Find Du(1, 2), where u is the unit vector in the direction of < 3, 4 >.

(ii) Find the maximum rate of change of f(x, y) at (1, 2) and the direction in which the maximum rate of change
occurs.

QUESTION 6. (6 points, SHOW THE WORK) (1) Given z > 0 and z2 + ze(x−y) − 6 = 0, x(t, s) = 3t2 + 2s and
y(t, s) = 2t+ 3s. Find ∂z/∂t when t = s = 1.

(2) Given the curve r(t) =<
√

2t, t2 + t, sin(πt) >. Find the equation of the tangent line to the curve r(t) at
(2, 6, 0).

QUESTION 7. (6 points, SHOW THE WORK) Let F =< e(x−2z) + y+ z+ 1, 2y+ x+ 1, −2e(x−2z) + x+ 3 >

(i) Find Curl(F). Is F conservative?

(ii) Assume that the given F is a force that is acting on a particle in order to move it from A = (0, 1, 0) to the
point D = (6, 8, 3) along the curve C (see picture) that consists of C1: part of r(t) =< 3t, t2 + 1,

√
t > from

A to B = (3, 2, 1), C2: part of the curve r(t) =< 3 + t, 2t + 2, t2 + 1 > from B to C = (4, 4, 2), C3: part of
r(t) =< 2t2 + 4, 4t+ 4, t2 + 2 > from C to D = (6, 8, 3). Find the work done by the force F (x, y) (i.e., find∫
C
F (x, y, z) · dr).

QUESTION 8. (8 points, SHOW THE WORK)

(i) Let f(x, y) = x2 + y2 + xy − 3x − 3y + 20. Find all critical points of f(x, y) and classify each point as local
min, local max, or saddle point

(ii) Find three positive real numbers x, y, z (i.e., x, y, z > 0) such that xyz is maximum and x+ y + z2 = 25. [hint:
use Lagrange]
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