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001 Problems Solutions on vectors



8. If the vectorsin the figure satisfy |u| = |v| = 1 and

u-+v+w=0, whatis|w|?

u

9-14 Fi nd_gwector a_)with representation given by the directed line
segment AB. Draw AB and the equivalent representation starting at
the origin.

9. A(-1,1), B3, 2
1. A(-1,3), B(2,2)
13. A(0,3,1), B(23,-1)

10. A(—4,-1), B(1,2)
12. A2,1), B(0,6)
14. A(4,0,-2), B(4,21)

SECTION 12.2 VECTORS 799

32-33 Find the magnitude of the resultant force and the angle it
makes with the positive x-axis.

32, 33.

200N

300N 60°

I:I 15-18 Find the sum of the given vectors and illustrate

geometrically.
15. (-1,4), (6,-2)
17. (3,0,1), (0,8,0)

16. (3,-1), (-1,5)
18. (1,3, -2), (0,0,6)

19-22 Finda + b, 2a + 3b, |a|,and |a — b]|.
19. a= (5 -12), b= (-3 -6)

2. a=4i+j, b=i-2]
21.a=1i+2] -3k, b=-2i—-j+5k
2 a=2i—4j +4k, b=2j —k

I:l 23-25 Find a unit vector that has the same direction as the given

vector.
2. —3i + 7j 2. (—4,2,4)
25. 8i —j + 4k

:l 26. Find a vector that has the same direction as ( —2, 4, 2) but has

length 6.

27-28 What is the angle between the given vector and the positive
direction of the x-axis?

2. i + /3] 28. 8i + 6j

I:l 29. If v liesin the first quadrant and makes an angle /3 with the

positive x-axis and | v| = 4, find v in component form.

30. If achild pulls asled through the snow on alevel path with a
force of 50 N exerted at an angle of 38° above the horizontal,
find the horizontal and vertical components of the force.

31. A quarterback throws a football with angle of elevation 40° and
speed 60 ft/s. Find the horizontal and vertical components of
the velocity vector.

34. The magnitude of avelocity vector is called speed. Suppose
that awind is blowing from the direction N45°W at a speed of
50 km/h. (This means that the direction from which the wind
blows is 45° west of the northerly direction.) A pilot is steering
aplane in the direction N60°E at an airspeed (speed in till air)
of 250 km/h. The true course, or track, of the plane is the
direction of the resultant of the velocity vectors of the plane
and the wind. The ground speed of the plane is the magnitude
of the resultant. Find the true course and the ground speed of
the plane.

35. A woman walks due west on the deck of a ship at 3 mi/h. The
ship is moving north at a speed of 22 mi/h. Find the speed and
direction of the woman relative to the surface of the water.

36. Ropes 3 mand 5 min length are fastened to a holiday decora-
tion that is suspended over a town square. The decoration has
amass of 5 kg. The ropes, fastened at different heights, make
angles of 52° and 40° with the horizontal. Find the tension in
each wire and the magnitude of each tension.

40°
52°

3m 5m

37. A clothesline is tied between two poles, 8 m apart. The line
is quite taut and has negligible sag. When a wet shirt with a
mass of 0.8 kg is hung at the middle of the line, the midpoint
is pulled down 8 cm. Find the tension in each half of the
clothesline.

38. Thetension T at each end of the chain has magnitude 25 N
(see the figure). What is the weight of the chain?

N e

N 7
N 7
37° 37°
P, A
N /

N 7
N 7

39. A boatman wants to cross a cana that is 3 km wide and wants
to land at a point 2 km upstream from his starting point. The
current in the canal flows at 3.5 km/h and the speed of his boat
is 13 km/h.

(a) Inwhat direction should he steer?
(b) How long will the trip take?
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20.

21,

22,

23.

2. |

25.

26. |

27.

SECTION12.2 VECTORS O 245
a+b=(4i+])+({-2j)=5i-]
2a+3b=2(4i+j)+3(1—2j)=8i+2j+3i—6j=11i—4j
la| = V& + 12 = V17
la—bl=[4i+]j) - (i-2))=Bi+3j=v3Z+F =V/18=3V2
at+b=>1+2j-3k)+(-2i-j+5k)=—i+j+2k
2a+3b=2(i+2j—3k)+3(—2i—j+5k) =2i+4j—6k—6i—3j+15k=—4i+j+9k
jal = VP T Z 1 (37 = V1A
la—b|=|(i+2j—-3k) — (—2i—j+5k)|=|3i+3j— 8kl =+/32+32+ (—8)2 =32
at+b=(2i—-4j+4k)+(2j—k)=2i—2j+3k
2a+3b=2(2i—4j+4k) +3(2j—k) =4i—8j+8k+6j—3k=4i—-2j+5k
la| = /22 + (-4 +4£2 = V36 =6
la—b|=|(2i-4j+4k) — (2j - k)| =[2i - 6j+5k| = /22 + (—6)% + 52 = V65
The vector —31i+ 7 j has length |31+ 7j| = \/m = /58, s0 by Equation 4 the unit vector with the same

direction is L (=3i+7j) =~

3 . 7.
— i+ —j
V58 V58 VEs)
—4,2,4)] —4)2 4+ 22+ 42 =36 =6,50u=3(—4,2,4) = (-2, 1 2).
The vector 81 — j + 4k has length |81 — j +4k| = /82 + (—1)2 + 4% = /81 = 9, so by Equation 4 the unit vector with

the same directionis $(8i —j+4k) = £i—1j+ 5k

—2,4,2)| = \/(—2)2 + 42 + 22 = /24 = 2/6, s0 a unit vector in the direction of (—2, 4,2) is u = 2—\1/6 (—2,4,2).

6 12 6
A vector in the same direction but with length 6 is 6u = 6 - (—2,4,2) = <7—, —, —> or {(—/6,26,v6 ).
\/_ V6 V6" V6 < )

From the figure, we see that tan § = ? =3 = 6=60°
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246 [ CHAPTER12 VECTORS AND THE GEOMETRY OF SPACE

28. From the figure we see that tan6 = £ = 2,50 6 = tan™" (

N

) ~ 36.9°.

29. From the figure, we see that the x-component of v is Y
v1 = |v|cos(m/3) =4 3 = 2 and the y-component is
vy = |v|sin(7/3) =4- @ =2+/3. Thus

v = (v1,v2) = <2,2\/§>.

30. From the figure, we see that the horizontal component of the

)

force F is |F| cos 38° = 50 cos 38° ~ 39.4 N, and the
vertical component is |F|sin 38° = 50 sin 38° =~ 30.8 N. 38° d
31. The velocity vector v makes an angle of 40° with the horizontal and
has magnitude equal to the speed at which the football was thrown. v
From the figure, we see that the horizontal component of v is
40

|v|cos40° = 60 cos 40° ~ 45.96 ft/s and the vertical component

is |v|sin40° = 60 sin 40° ~ 38.57 ft/s.

32. The given force vectors can be expressed in terms of their horizontal and vertical components as
20 cos45° 1+ 20sin45° j = 104/2i 4+ 10+v/2j and 16 cos 30° i — 16sin 30° j = 8 v/3i — 8j. The resultant force F
is the sum of these two vectors: F' = (10 V248 \/5) i+ (10 V2 — 8)j A~ 28.00i + 6.14j. Then we have
|F| =~ 1/(28.00)2 + (6.14)2 ~ 28.7 Ib and, letting 6 be the angle F makes with the positive z-axis,

10v2 -8 10v2 -8 >~124°
10v2 +843 1012+ 843 o

tanf = = 9:tan’1(

33. The given force vectors can be expressed in terms of their horizontal and vertical components as —300 i and

200 cos 60° i 4 200sin 60° j = 200(%) i+ 200 (@) j = 1001+ 100 /3 j. The resultant force F is the sum of
these two vectors: F = (—300 + 100) i + (0 + 100 \/§)J = —200i + 100v/3j. Then we have

|F| ~ 1/(—200)2 + (100 \/§)2 = /70,000 = 100 /7 ~ 264.6 N. Let 6 be the angle F makes with the
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m Exercises

CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

I:l 1. Determine whether each statement is true or false.
(a) Two lines parallel to athird line are parallel.
(b) Two lines perpendicular to athird line are paralel.
(c) Two planes parallel to athird plane are parallel.
(d) Two planes perpendicular to a third plane are parallel.
(e) Two lines parallel to aplane are parallel.
(f) Two lines perpendicular to a plane are parallel.
(9) Two planes paralel to aline are paralel.
(h) Two planes perpendicular to aline are paralel.
(i) Two planes either intersect or are parallel.
(j) Two lines either intersect or are paralel.
(k) A plane and aline either intersect or are parallel.

2-5 Find avector equation and parametric equations for the line.

] 2. Theline through the point (6, —5, 2) and paralel to the

vector (1,3, —2
-

The line through the point (2, 2.4, 3.5) and parallel to the
[k

vector 3i + 2j — k
)

The line through the point (1, 0, 6) and perpendicular to the
planex + 3y + z=5

16. () Find parametric equations for the line through (2, 4, 6) that
is perpendicular tothe planex —y + 3z = 7.

(b) In what points does this line intersect the coordinate

planes?
17. Find avector equation for the line segment from (2, —1, 4)
to (4,6, 1).
18. Find parametric equations for the line segment from (10, 3, 1)
to (5, 6, —3).

19-22 Determine whether the lines L, and L, are parallel, skew, or
intersecting. If they intersect, find the point of intersection.

The line through the point (0, 14, —10) and parallel to the line
Xx=-1+2t,y=6-3tz=3+ Ot

6-12 Find parametric equations and symmetric equations for the

line.

I:I 6. The line through the origin and the point (4, 3, —1)
:|7. The line through the points (O, 1 1) and (2,1, —3)

— 8. Theline through the points (1.0, 2.4, 4.6) and (2.6, 1.2, 0.3)
[ 9. Theline through the points (—8, 1, 4) and (3, —2, 4)

[—T10. Thelinethrough (2, 1, 0) and perpendicular to bothi + j
andj + k

The line through (1, —1, 1) and parallel to the line
X+2=3y=z-3

—In.

. Theline of intersection of the planesx + 2y + 3z = 1
andx—y+z=1

19. Ly x=3+2t, y=4—-1t z=1+3t
Ly x=1+4s y=3-2s5 z=4+5s
2. Ly x=5-12t, y=3+9, z=1-3t
Ly x=3+8s, y=—-6s z=7+2s
o X—-2 y—-3 :z-1
21. Ly 1 = - = 3
I_.x—37y+47z—2
o 3 -7
X _y—-1 zz-2
i - 3
XxX—2 y—-3 z
Lz ===
2 -2 7

23-40 Find an equation of the plane.

[—123. The plane through the origin and perpendicular to the
vector (1, —2,5)

——24. The plane through the point (5, 3, 5) and with normal

vector 2i +j — k

— 25. The plane through the point (—1, %, 3) and with normal

vector i + 4 + k

26. The plane through the point (2, 0, 1) and perpendicular to the
linex=3t,y=2—1tz=3+ 4t

2]7. The plane through the point (1, —1, —1) and parallel to the
plane5x —y —z=16

. Istheline through (—4, —6, 1) and (—2, 0, —3) parallel to the
line through (10, 18, 4) and (5, 3, 14)?

. Istheline through (=2, 4, 0) and (1, 1, 1) perpendicular to the
linethrough (2, 3, 4) and (3, -1, —8)?

. (8) Find symmetric equations for the line that passes
through the point (1, —5, 6) and is parallel to the vector
(=1,2,-3).
(b) Find the points in which the required line in part (a) inter-
sects the coordinate planes.

-

. Homework Hints available at stewartcal culus.com

28. The plane through the point (2, 4, 6) and parallel to the plane
z=X+Yy

29. The plane through the point (1, £, £) and parallel to the plane
Xt+ty+z=0

—130. The planethat containsthelinex =1+ t,y =2 —t,
z=4 - 3tandispaalel totheplane5x + 2y + z =1

. The plane through the points (0, 1, 1), (1, 0, 1), and (1, 1, 0)

32. The plane through the origin and the points (2, —4, 6)
and (5,1, 3)
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33

. The plane through the points (3, —1, 2), (8, 2, 4), and

(=1, -2,-3)
. The plane that passes through the point (1, 2, 3) and contains 57.
thelinex=3t,y=1+1tz=2—1t 58

SECTION 12.5 EQUATIONS OF LINES AND PLANES 825

57-58 (a) Find parametric equations for the line of intersection of
the planes and (b) find the angle between the planes.

X+ty+z=1 x+2y+2z=1

X—2y+z=1 2x+y—3z=3

. The plane that passes through the point (6, 0, —2) and contains
thelinex =4 — 2t,y =3 + 5t,z =7 + 4t

59-60 Find symmetric equations for the line of intersection of the

. The plane that passes through the point (1, —1, 1) and
contains the line with symmetric equations x = 2y = 3z

. The plane that passes through the point (=1, 2, 1) and contains
the line of intersection of the planes x +y — z = 2 and —

60. z=2x —y — 5,

planes.
59.

5x —2y —2z=1, 4x+y+z=6

z=4x +3y —5

2x—y+3z=1

. The plane that passes through the points (0, —2, 5) and
(—1, 3,1) and is perpendicular to the plane 2z = 5x + 4y

39. The plane that passes through the point (1, 5, 1) and is perpen- |:|52-
dicular to the planes 2x +y — 2z =2andx + 3z =4
40. The plane that passes through the line of intersection of the 63.
planes x — z = land y + 2z = 3 and is perpendicular to the
planex +y —2z=1
64.
41-44 Use intercepts to help sketch the plane.
M. 2x + 5y +z=10 42. 3x +y+2:=6
43. 6x — 3y +4z=6 44. 6x + 5y — 3z =15
65.
45-47 Find the point at which the line intersects the given plane.
45. x =3 -t y=2+t z=5 x—-y+2z=9
8. x=1+2t y=4t, z=2-3t; x+2y—z+1=0 [___|66.
4. x=y—1=2z; 4x—-y+3z=8
"1 48. Where does the line through (1, 0, 1) and (4, —2, 2) intersect 67
the plane X +y + z = 6?
49. Find direction numbers for the line of intersection of the planes

[ Iso

X+y+z=1landx +z=0.

. Find the cosine of the angle between the planes x +y + z =0
and X + 2y + 3z = 1.

51-56 Determine whether the planes are parallel, perpendicular, or

ne
51

ither. If neither, find the angle between them.
. X+4y —3z=1 -3x+6y+7z=0
L 2z=4y—X% 3x—12y +6z=1

X+y+tz=1 x—-y+z=1

. 2X— 3y +4z=5 x+6y+4:=3
. X=4y — 2z, 8y=1+2x+ 4z 69.
. X+2y+2z=1 2x—-y+2z=1 10.

61.

68.

Find an equation for the plane consisting of all points that are
equidistant from the points (1, 0, —2) and (3, 4, 0).

Find an equation for the plane consisting of all points that are
equidistant from the points (2, 5, 5) and (-6, 3, 1).

Find an equation of the plane with x-intercept a, y-intercept b,
and z-intercept c.

(a) Find the point at which the given lines intersect:
r=(1,1,0) +t(1, -1,2)
r=202) +s(-110)

(b) Find an equation of the plane that contains these lines.

Find parametric equations for the line through the point
(0, 1, 2) that is parallel to the plane x +y + z =2 and
perpendicular to the linex =1+t y=1—1t,z =2t

Find parametric equations for the line through the point
(0, 1, 2) that is perpendicular to the line x = 1 + t,
y =1 —t, z = 2t and intersects this line.

. Which of the following four planes are parallel? Are any of

them identical?
P.: 3x + 6y —3z2=06
Ps: 9y =1+ 3x + 62z

Py: 4x — 12y + 8z=5
Pyiz=x+2y—2
Which of the following four lines are parallel? Are any of them
identical?
Li:x=1+6t y=1-3t z=12t+5
Layx=1+2t y=t z=1+4t
Ls: 2x —2=4—-4y=7z+1
Ls r=(3,1,5) +1(4,28)

69-70 Use the formula in Exercise 45 in Section 12.4 to find the
distance from the point to the given line.

4,1, -2);
©,1,3);

x=1+ty=3-2t, z=4-3t
Xx=2t,y=6-2t, z=3+t
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826 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

71-72 Find the distance from the point to the given plane.
n. (1, -2,4),
72. (-6, 3,5),

3X+2y+6z=5
X—2y —4z=238

73-74 Find the distance between the given parallel planes.
713.2x =3y +z=4, 4x -6y +2:=3

74. 6z =4y —2x, 9z=1—3x + 6y

75. Show that the distance between the parallel planes
ax + by +cz+d;=0andax + by +cz +d,=0is

[di — do|

[—176. Find equations of the planes that are parallel to the plane

X + 2y — 2z = 1 and two units away from it.

71. Show that the lines with symmetric equations x =y = z and
X + 1 =y/2 = z/3 are skew, and find the distance between
these lines.

18.

1.

81.

Find the distance between the skew lines with parametric
equationsx =1 +t,y =1+ 6t,z=2t,and x = 1 + 2s,
y=5+15s,z= -2 + 6s.

Let L; be the line through the origin and the point (2, 0, —1).
Let L, be the line through the points (1, —1, 1) and (4, 1, 3).
Find the distance between L, and L.

Let L; be the line through the points (1, 2, 6) and (2, 4, 8).
Let L, be the line of intersection of the planes 7 and 7,
where 77 is the plane x — y + 2z + 1 = 0 and mr, is the plane
through the points (3, 2, —1), (0, 0, 1), and (1, 2, 1). Calculate
the distance between L; and L..
If a, b, and c are not all 0, show that the equation
ax + by + cz + d = 0 represents a plane and (a, b, ¢) is
a normal vector to the plane.

Hint: Suppose a # 0 and rewrite the equation in the form

a<x+%>+b(y—0)+c(z—0):0

. Give a geometric description of each family of planes.

@x+y+z=c
(c) ycosf + zsinf=1

(b) x+y+cz=1

PUTTING 3D IN PERSPECTIVE

segment.

Computer graphics programmers face the same challenge as the great painters of the past: how
to represent a three-dimensional scene as a flat image on a two-dimensional plane (a screen or a
canvas). To create the illusion of perspective, in which closer objects appear larger than those
farther away, three-dimensional objects in the computer’s memory are projected onto a rect-
angular screen window from a viewpoint where the eye, or camera, is located. The viewing
volume—the portion of space that will be visible—is the region contained by the four planes that
pass through the viewpoint and an edge of the screen window. If objects in the scene extend
beyond these four planes, they must be truncated before pixel data are sent to the screen. These
planes are therefore called clipping planes.

1. Suppose the screen is represented by a rectangle in the yz-plane with vertices (0, =400, 0)
and (0, =400, 600), and the camera is placed at (1000, 0, 0). A line L in the scene passes
through the points (230, —285, 102) and (860, 105, 264). At what points should L be clipped
by the clipping planes?

2. If the clipped line segment is projected on the screen window, identify the resulting line

3. Use parametric equations to plot the edges of the screen window, the clipped line segment,
and its projection on the screen window. Then add sight lines connecting the viewpoint to
each end of the clipped segments to verify that the projection is correct.

4. A rectangle with vertices (621, —147, 206), (563, 31, 242), (657, —111, 86), and
(599, 67, 122) is added to the scene. The line L intersects this rectangle. To make the rect-
angle appear opaque, a programmer can use hidden line rendering, which removes portions
of objects that are behind other objects. Identify the portion of L that should be removed.
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SECTION12.5 EQUATIONS OF LINESAND PLANES [ 273

12.5 Equations of Lines and Planes

1. (a) True; each of the first two lines has a direction vector parallel to the direction vector of the third line, so these vectors are
each scalar multiples of the third direction vector. Then the first two direction vectors are also scalar multiples of each
other, so these vectors, and hence the two lines, are parallel.

(b) False; for example, the z- and y-axes are both perpendicular to the z-axis, yet the x- and y-axes are not parallel.

(c) True; each of the first two planes has a normal vector parallel to the normal vector of the third plane, so these two normal
vectors are parallel to each other and the planes are parallel.

(d) False; for example, the zy- and yz-planes are not parallel, yet they are both perpendicular to the zz-plane.

(e) False; the - and y-axes are not parallel, yet they are both parallel to the plane z = 1.

(f) True; if each line is perpendicular to a plane, then the lines’ direction vectors are both parallel to a normal vector for the
plane. Thus, the direction vectors are parallel to each other and the lines are parallel.

(g) False; the planes y = 1 and z = 1 are not parallel, yet they are both parallel to the z-axis.

(h) True; if each plane is perpendicular to a line, then any normal vector for each plane is parallel to a direction vector for the
line. Thus, the normal vectors are parallel to each other and the planes are parallel.

(i) True; see Figure 9 and the accompanying discussion.

(j) False; they can be skew, as in Example 3.

(k) True. Consider any normal vector for the plane and any direction vector for the line. If the normal vector is perpendicular
to the direction vector, the line and plane are parallel. Otherwise, the vectors meet at an angle 6, 0° < 6 < 90°, and the

line will intersect the plane at an angle 90° — 6.

2. For this line, we haverg = 6i —5j+2kandv =i+ 3j — % k, so a vector equation is
r=ro+tv=_(6i-5j+2k)+t(i+3j—2k) =(6+1t)i+ (—5+3t)j+ (2 — Zt) k and parametric equations are
r=6+ty=—-5+3z=2—2tL

3. For this line, we have ro = 2i+2.4j+ 3.5k and v = 3i+ 2j — k, so a vector equation is
r=ro+tv=(2i+24j+35k)+t(3i+2j—k) = (2+3t)i+ (2.4 +2t) j+ (3.5 — t) k and parametric equations are
r=2+4+3t,y=24+4+2t,z=35—1.

4. This line has the same direction as the given line, v = 21 — 3j + 9k. Here ro = 14 j — 10k, so a vector equation is
r=(14j—10k) +t(2i —3j+9k) = 2ti+ (14 — 3t) j + (—10 + 9¢) k and parametric equations are = 2t,
y=14—-3t, z=—10+ 9¢t.

5. A line perpendicular to the given plane has the same direction as a normal vector to the plane, such as
n = (1,3,1). Soro =i+ 6k, and we can take v =i + 3 j + k. Then a vector equation is

r=(i+6k)+t(i+3j+k)=(1+1t)i+3tj+ (6+ t)k, and parametric equationsarex = 1+ ¢,y = 3¢,z = 6 + ¢.
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6.

10.

1.

12.

13.

14,

The vector v = (4 — 0,3 — 0, —1 — 0) = (4,3, —1) is parallel to the line. Letting Py = (0, 0, 0), parametric equations are
r=0+4-t=4,y=0+3-t=3t,z=0+(-1)-t = ﬂf,Whilesymmetricequationsare% = % = il or
r_Y¥__
173777
. The vector v = (2 — 0,1 — 3, -3 — 1) = (2, 4, —4) is parallel to the line. Letting Py = (2, 1, —3), parametric equations
. . . -2 -1
arex =242, y=1+ %t, z = —3 — 4t, while symmetric equations are IT = UIT = zj—43 or
xr—2 z+3
=2y—2= .
2 Y —1

.v=1(26-10,1.2—-24,0.3 — 4.6) = (1.6, —1.2, —4.3), and letting P, = (1.0, 2.4, 4.6), parametric equations are

r—10 y—24 2-46
1.6 ~ —-12 ~ —43°

r=10+1.6t,y =24 —1.2t, 2 = 4.6 — 4.3¢, while symmetric equations are

.v=(3—-(-8),-2—-1,4—4) = (11,-3,0), and letting Py = (—8, 1, 4), parametric equations are z = —8 + 11¢,

. . . -1 . L
y =1-—3t,z =4+ 0t = 4, while symmetric equations are Il—‘;g =¥ 3 z = 4. Notice here that the direction number

- —4
¢ = 0, so rather than writing z

in the symmetric equation we must write the equation z = 4 separately.

ij k
v=(_{1+j)x(j+k)=|1 1 0|=1i—j+ kis the direction of the line perpendicular to both i + j and j + k.
011
With Py = (2,1, 0), parametric equations are # = 2 + ¢,y = 1 — t, z = ¢ and symmetric equations are z — 2 = y_—ll =z

orx—2=1—-y=z

The line has direction v = (1,2, 1). Letting Py = (1, —1, 1), parametric equationsare z = 1 + ¢,y = =1+ 2,z =1+t
and symmetric equations are x — 1 = yTH =z—1

Setting z = 0 we see that (1, 0, 0) satisfies the equations of both planes, so they do in fact have a line of intersection.
The line is perpendicular to the normal vectors of both planes, so a direction vector for the line is
v=mn; xns = (1,2,3) x (1,—1,1) = (5,2, —3). Taking the point (1, 0, 0) as Py, parametric equations are z = 1 + 5t,

r—1 y z

y = 2t, z = —3t, and symmetric equations are

Direction vectors of the lines are vi = (—2 — (—4),0 — (—6), —3 — 1) = (2,6, —4) and

vy = (5—10,3— 18,14 — 4) = (-5, —15,10), and since vo = —%vl, the direction vectors and thus the lines are parallel.

Direction vectors of the lines are vi = (3, —3,1) and vo = (1, —4, —12). Since v1 - vo = 3 + 12 — 12 # 0, the vectors and

thus the lines are not perpendicular.
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15. (a) The line passes through the point (1, —5, 6) and a direction vector for the line is (—1, 2, —3), so symmetric equations for

. r—1 y+5 2z—-6
he 1 < - — .
the line are I D) 3

(b) The line intersects the zy-plane when z = 0, so we need z _11 = y_—;—S = 0—_36 or L _11 =2 = z=-1,

y+5

5 = 2 =y = —1. Thus the point of intersection with the zy-plane is (—1, —1, 0). Similarly for the yz-plane,

_Yy+5 =z-6
2 =3
z—1 5 z-6 3

the zz-plane, weneedy =0 = T =3~ 3 = z=-3

weneedz =0 = 1

=y = —3, z = 3. Thus the line intersects the yz-plane at (0, —3, 3). For

z= —%. So the line intersects the xz-plane

|

at (~2.0.-9).
16. (a) A vector normal to the plane z — y + 3z = 7is n = (1, —1, 3), and since the line is to be perpendicular to the plane, n is
also a direction vector for the line. Thus parametric equations of the linearex =2 +t,y =4 — ¢, 2 = 6 + 3t.
(b) On the zy-plane, z =0. So 2 =6+ 3t =0 = ¢ = —2 in the parametric equations of the line, and therefore x = 0
and y = 6, giving the point of intersection (0, 6, 0). For the yz-plane, z = 0 so we get the same point of interesection:

(0,6,0). For the zz-plane, y = 0 which implies ¢ = 4, so x = 6 and z = 18 and the point of intersection is (6, 0, 18).

17. From Equation 4, the line segment fromrg = 2i —j+4ktor; =4i+6j+ kis
r(t) = (1—t)ro+tri = (1—t)(2i—j+4k) + t(4i+6j+k) = (2i —j+4k) +1(2i+7j—3k),0< ¢ < 1.
18. From Equation 4, the line segment fromrg = 10i+3j+ktor; =5i+6j—3kis
r(t) =(1—t)ro+tri =(1—¢)(10i+3j+k) +¢5i+6j—3k)
=(10i+3j+Kk) +t(-5i+3j—4k), 0<t<1.

The corresponding parametric equations are x = 10 — 5,y =3+ 3t,2 =1—-4¢t,0 <t < 1.

19. Since the direction vectors (2, —1,3) and (4, —2, 5) are not scalar multiples of each other, the lines aren’t parallel. For the
lines to intersect, we must be able to find one value of ¢ and one value of s that produce the same point from the respective
parametric equations. Thus we need to satisfy the following three equations: 3 + 2t =1+ 4s,4 —t = 3 — 2s,

14 3t = 4 + 5s. Solving the last two equations we get ¢ = 1, s = 0 and checking, we see that these values don’t satisfy the

first equation. Thus the lines aren’t parallel and don’t intersect, so they must be skew lines.
20. Since the direction vectors are vi = (—12,9, —3) and vz = (8, —6, 2), we have vi = —3v; 5o the lines are parallel.

21. Since the direction vectors (1, —2, —3) and (1,3, —7) aren’t scalar multiples of each other, the lines aren’t parallel. Parametric
equations of the linesare L1: ¢ =2+ t,y =3 —2t,z=1—3tand Ly: © =3+ s,y = —4 + 3s, z = 2 — 7s. Thus, for the
lines to intersect, the three equations 2+t =3+ s, 3 — 2t = —4 + 3s,and 1 — 3t = 2 — 7s must be satisfied simultaneously.
Solving the first two equations gives t = 2, s = 1 and checking, we see that these values do satisfy the third equation, so the

lines intersect when ¢ = 2 and s = 1, that is, at the point (4, —1, —5).
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. The direction vectors (1, —1, 3) and (2, —2, 7) are not parallel, so neither are the lines. Parametric equations for the lines are

Li:x=t,y=1—t,z=2+3tand La: x = 2+ 2s,y = 3 — 25, z = 7s. Thus, for the lines to interesect, the three
equations t = 2+ 2s,1 —t = 3 — 2s, and 2 + 3t = 7s must be satisfied simultaneously. Solving the last two equations gives
t = —10, s = —4 and checking, we see that these values don’t satisfy the first equation. Thus the lines aren’t parallel and

don’t intersect, so they must be skew.

Since the plane is perpendicular to the vector (1, —2, 5), we can take (1, —2, 5) as a normal vector to the plane.

(0,0,0) is a point on the plane, so settinga = 1, b= —2, ¢ = 5and o = 0, yo = 0, zo = 0 in Equation 7 gives

1(z —0) 4+ (—=2)(y — 0) + 5(z — 0) = 0 or = — 2y + 5z = 0 as an equation of the plane.

2i+j— k= (2,1,—1) is a normal vector to the plane and (5, 3, 5) is a point on the plane, so settinga = 2,b=1,c = —1,
20 =5, yo = 3, zo = 5 in Equation 7 gives 2(z — 5) 4+ 1(y — 3) + (—1)(z — 5) = 0 or 2z + y — z = 8 as an equation of the
plane.

i+4j+k=(1,4,1) is a normal vector to the plane and (—1, ,3) is a point on the plane, so settinga = 1,b=4,c =1,
xo = —1,y0 = 3, 20 = 3 in Equation 7 gives 1[z — (—1)] + 4 (y — 3) + 1(z — 3) = 0 or & + 4y + z = 4 as an equation of
the plane.

Since the line is perpendicular to the plane, its direction vector (3, —1, 4) is a normal vector to the plane. The point (2,0,1) is

on the plane, so an equation of the plane is 3(z — 2) 4+ (=1)(y — 0) + 4(z — 1) = 0 or 3z — y + 4z = 10.

Since the two planes are parallel, they will have the same normal vectors. So we can take n = (5, —1, —1), and an equation of
the planeis 5(x — 1) — 1[y — (—1)] = 1[z — (1)) =0orbr —y —z =T.

Since the two planes are parallel, they will have the same normal vectors. A normal vector for the plane z = = + y or

x4y —z=0isn = (1,1, —1), and an equation of the desired plane is 1(z — 2) + 1(y — 4) — 1(2 — 6) = O or

z + y — z = 0 (the same plane!).

Since the two planes are parallel, they will have the same normal vectors. So we can take n = (1,1, 1), and an equation of the

plancis 1(z — 1) +1(y—3) +1(2 —3) =0orz +y+2z = & or 6z + 6y + 62 = 11.

First, a normal vector for the plane 5z + 2y + z = lis n = (5,2, 1). A direction vector for the line is v = (1, —1, —3), and
since n - v = 0 we know the line is perpendicular to n and hence parallel to the plane. Thus, there is a parallel plane which
contains the line. By putting ¢ = 0, we know that the point (1,2,4) is on the line and hence the new plane. We can use the

same normal vector n = (5, 2, 1), so an equation of the plane is 5(x — 1) +2(y — 2) + 1(# — 4) = 0 or b5z + 2y + z = 13.

Here the vectorsa = (1 — 0,0 — 1,1 —1) = (1,—1,0) and b = (1 — 0,1 — 1,0 — 1) = (1, 0, —1) lie in the plane, so
a X b is a normal vector to the plane. Thus, we cantaken =a x b = (1 —0,0+ 1,0+ 1) = (1,1,1). If Py is the point

(0,1,1), an equation of the plane is 1(x — 0) + 1(y — 1) + 1(z — 1) =0orz +y + 2z = 2.
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Here the vectors a = (2, —4,6) and b = (5,1, 3) lie in the plane, so
n=axb=(-12-6,30 — 6,2 + 20) = (—18, 24, 22) is a normal vector to the plane and an equation of the plane is

—18(z — 0) +24(y — 0) +22(z — 0) = 0 or —18z + 24y + 22z = 0.

Here the vectorsa = (8 — 3,2 — (—1),4 —2) = (5,3,2) and b = (—1 — 3,—-2 — (—1), -3 — 2) = (—4,—1,—5) licin
the plane, so a normal vector to the planeisn = a x b = (=15 + 2, —8 + 25, —5 + 12) = (—13,17, 7) and an equation of

the plane is —13(x — 3) + 17[y — (—1)] + 7(z —2) = 0 or —13x + 17y + 7z = —42.

If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given
line lies in the plane, its direction vector a = (3,1, —1) is one vector in the plane. We can verify that the given point (1, 2, 3)
does not lie on this line, so to find another nonparallel vector b which lies in the plane, we can pick any point on the line and
find a vector connecting the points. If we put ¢ = 0, we see that (0, 1, 2) is on the line, so
b=(1-0,2-1,3-2)=(1,1,1)andn=axb=(1+1,—1-3,3—1) = (2, —4,2). Thus, an equation of the plane

is2(x — 1) — 4(y — 2) + 2(z — 3) = 0 or 2z — 4y + 2z = 0. (Equivalently, we can write z — 2y + z = 0.)

If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given
line lies in the plane, its direction vector a = (—2, 5, 4) is one vector in the plane. We can verify that the given point (6, 0, —2)
does not lie on this line, so to find another nonparallel vector b which lies in the plane, we can pick any point on the line and
find a vector connecting the points. If we put ¢ = 0, we see that (4, 3, 7) is on the line, so
b=(6-40-3,-2-7=(2,-3,—-9)andn=ax b = (-45+ 12,8 — 18,6 — 10) = (—33, —10, —4). Thus, an
equation of the plane is —33(z — 6) — 10(y — 0) — 4[z — (—2)] = 0 or 33z + 10y + 4z = 190.

1 z

Sincethelinem:?y:?;z,orx:m =173

, lies in the plane, its direction vector a = <17 %, %> is parallel to the plane.

The point (0, 0, 0) is on the line (put ¢ = 0), and we can verify that the given point (1, —1,1) in the plane is not on the line.
The vector connecting these two points, b = (1, —1, 1), is therefore parallel to the plane, but not parallel to (1,2, 3). Then
axb=(3+3%32-1-1-1)=(2 -2 %) isanormal vector to the plane, and an equation of the plane is

2(x—0)—2(y—0)—£(z—0)=0o0rbz —4y — 9z = 0.

A direction vector for the line of intersection isa = n; x ny = (1,1, —1) x (2,—1,3) = (2, -5, —3), and a is parallel to the
desired plane. Another vector parallel to the plane is the vector connecting any point on the line of intersection to the given
point (—1,2, 1) in the plane. Setting z = 0, the equations of the planes reduce to y — z = 2 and —y + 3z = 1 with

simultaneous solution y = £ and z = £. So a point on the line is (0, 5, £) and another vector parallel to the plane is

(—=1,—2,—3). Then a normal vector to the plane is n = (2, —5, —3) x (=1, -2, —3) = (—2,4, —8) and an equation of

the planeis —2(z + 1) +4(y —2) —8(z — 1) =0orz — 2y + 4z = —1.
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The points (0, —2,5) and (—1, 3, 1) lie in the desired plane, so the vector vi = (—1,5, —4) connecting them is parallel to
the plane. The desired plane is perpendicular to the plane 2z = 5x + 4y or 5z + 4y — 2z = 0 and for perpendicular planes,

a normal vector for one plane is parallel to the other plane, so vo = (5,4, —2) is also parallel to the desired plane.

A normal vector to the desired plane is n = vi X vo = (=10 + 16, —20 — 2, —4 — 25) = (6, —22, —29).

Taking (zo, Yo, z0) = (0, —2, 5), the equation we are looking for is 6(z — 0) — 22(y + 2) — 29(z —5) =0 or

6z — 22y — 29z = —101.

If a plane is perpendicular to two other planes, its normal vector is perpendicular to the normal vectors of the other two planes.
Thus (2,1, -2) x (1,0,3) = (3—0,—2— 6,0 — 1) = (3, —8, —1) is a normal vector to the desired plane. The point

(1,5,1) lies on the plane, so an equation is 3(x — 1) —8(y —5) — (¢ — 1) =0or3z — 8y — z = —38.

n; = (1,0, —1) and ny = (0, 1, 2). Setting z = 0, it is easy to see that (1,3, 0) is a point on the line of intersection of

x — z = landy + 2z = 3. The direction of this line is vi = n; x ny = (1, —2,1). A second vector parallel to the desired
plane is vy = (1,1, —2), since it is perpendicular to « + y — 2z = 1. Therefore, a normal of the plane in question is

n=vy xvy=(4-1,1+21+2)=(3,3,3), orwe canuse (1,1, 1). Taking (zo, yo, 20) = (1,3, 0), the equation we are
looking foris (z — 1)+ (y —3) +2=0 & a+y+z=4

To find the z-intercept we set y = z = 0 in the equation 2z + 5y + z = 10 -
and obtain 2z = 10 =z = 5 so the z-intercept is (5, 0,0). When
r=z=0wegetby =10 = y = 2,so the y-intercept is (0, 2,0).
Setting z = y = 0 gives z = 10, so the z-intercept is (0, 0, 10) and we

graph the portion of the plane that lies in the first octant.

To find the z-intercept we set y = z = 0 in the equation 3z + y + 2z = 6
and obtain 3z =6 = x = 2 so the z-intercept is (2, 0,0). When

x =z = 0 we get y = 6 so the y-intercept is (0, 6, 0). Settingxz =y = 0
gives2z =6 = z = 3, so the z-intercept is (0, 0, 3). The figure shows

the portion of the plane that lies in the first octant.

Setting y = z = 0 in the equation 62 — 3y + 4z = 6 gives 6z = 6 =
z=1,whenz =z=0wehave -3y =6 = y=-2,andz=y=0
implies4z =6 = z = £, so the intercepts are (1,0, 0), (0, —2,0), and
(0,0, %) The figure shows the portion of the plane cut off by the coordinate

planes.
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Setting y = z = 0 in the equation 6x + 5y — 3z = 15 gives 6 = 15 =
z=25 whenz=2=0wehave 5y =15 = y=3,andz=y=0
implies —3z =15 = z = —5, so the intercepts are (£,0,0), (0, 3,0),
and (0,0, —5). The figure shows the portion of the plane cut off by the

coordinate planes.

Substitute the parametric equations of the line into the equation of the plane: (3 —t) — (2+¢) +2(5t) =9 =
8 =8 =t = 1. Therefore, the point of intersection of the line and the plane is givenbyx =3 -1 =2,y =2+1=3,
and z = 5(1) = 5, that is, the point (2, 3, 5).

Substitute the parametric equations of the line into the equation of the plane: (1 + 2t) +2(4t) — (2-3t)+1=0 =
13t =0 =t = 0. Therefore, the point of intersection of the line and the plane is given by x = 1 + 2(0) = 1,
y =4(0) =0, and z = 2 — 3(0) = 2, that is, the point (1,0, 2).

Parametric equations for the linearex = t,y = 1+ t¢, z = %t and substituting into the equation of the plane gives
4 — (L+t)+3(3t) =8 = 3t=9 = t=2Thusz=2,y=1+2=3,2z=3(2) = 1and the point of

intersection is (2, 3, 1).

A direction vector for the line through (1,0, 1) and (4, —2,2) is v = (3, —2, 1) and, taking Po = (1,0, 1), parametric
equations for the line are = = 1 4 3t, y = —2¢, z = 1 4 t. Substitution of the parametric equations into the equation of the
plane gives 1 +3t —2t+1+t=6 = ¢=2. Thenz=1+3(2)=7,y=—2(2) = —4,and z = 1+ 2 = 3 so the point

of intersection is (7, —4, 3).

Setting = = 0, we see that (0, 1, 0) satisfies the equations of both planes, so that they do in fact have a line of intersection.
v=mni xng=(1,1,1) x (1,0,1) = (1,0, —1) is the direction of this line. Therefore, direction numbers of the intersecting

line are 1, 0, —1.

The angle between the two planes is the same as the angle between their normal vectors. The normal vectors of the

two planes are (1,1, 1) and (1,2, 3). The cosine of the angle 6 between these two planes is

cosg = (L1 -(1,2.3) 14+2+3 _ 6 [6
(L1, 1](1,2,3)] VIF1+1/T+4+9 42 7

Normal vectors for the planes are n; = (1,4, —3) and n2 = (—3, 6, 7), so the normals (and thus the planes) aren’t parallel.

Butn; - ny = —3 + 24 — 21 = 0, so the normals (and thus the planes) are perpendicular.

Normal vectors for the planes are n; = (—1,4, —2) and n, = (3, —12,6). Since n = —3n;, the normals (and thus the

planes) are parallel.

Normal vectors for the planes are n; = (1,1,1) and ny = (1, —1, 1). The normals are not parallel, so neither are the planes.
Furthermore, n; - ny =1 — 1+ 1 =1 # 0, so the planes aren’t perpendicular. The angle between them is given by

cos = 2112 ! E = 0= cosfl(%) ~ 70.5°.

| ma V343 3
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The normals are n; = (2, —3,4) and na = (1, 6, 4) so the planes aren’t parallel. Since n; - ny = 2 — 18 + 16 = 0, the

normals (and thus the planes) are perpendicular.
The normals are n; = (1, —4,2) and ny = (2, —8,4). Since nz = 2n,, the normals (and thus the planes) are parallel.

The normal vectors are ny = (1,2, 2) and np = (2, —1, 2). The normals are not parallel, so neither are the planes.
Furthermore, n; - np = 2 — 2+ 4 = 4 # 0, so the planes aren’t perpendicular. The angle between them is given by

COSQZH*L 4 = Gzcosfl(%)z63.6°.

el ~ Vo5 9
(a) To find a point on the line of intersection, set one of the variables equal to a constant, say z = 0. (This will fail if the line of
intersection does not cross the xy-plane; in that case, try setting « or y equal to 0.) The equations of the two planes reduce
toxz +y = 1and z + 2y = 1. Solving these two equations gives = 1, y = 0. Thus a point on the line is (1,0, 0).
A vector v in the direction of this intersecting line is perpendicular to the normal vectors of both planes, so we can take
v=m xny=(1,1,1) x (1,2,2) = (2 —-2,1—-2,2—1) = (0, —1, 1). By Equations 2, parametric equations for the

lincarex = 1,y = —t, z = t.

(b) The angle between the planes satisfies cos = momg 14242 5 Therefore § = cos™* <3—f/§> ~ 15.8°.

mf|nz| V3O 33
(a) If we set z = 0 then the equations of the planes reduce to 3z — 2y = 1 and 2z + y = 3 and solving these two equations
gives z = 1, y = 1. Thus a point on the line of intersection is (1, 1,0). A vector v in the direction of this intersecting line
is perpendicular to the normal vectors of both planes, so letv =n; X ny = (3,-2,1) x (2,1, -3) = (5,11, 7). By
Equations 2, parametric equations for the lineare z = 1 4+ 5,y = 1 4+ 11t, z = Tt.

(b)cos@:H*67273 L = 0:cos_1(ﬁ)z85.9°.

| no| V1414 14
Setting z = 0, the equations of the two planes become 5z — 2y = 1 and 4 + y = 6. Solving these two equations gives
z =1,y = 2 so a point on the line of intersection is (1,2, 0). A vector v in the direction of this intersecting line is
perpendicular to the normal vectors of both planes. So we can use v.=mn; x nz = (5, -2, —2) x (4,1,1) = (0,—13,13) or

. . . . —2
equivalently we can take v = (0, —1, 1), and symmetric equations for the line are x = 1, y,1 = i orr=1y—-2=—z

If we set z = 0 then the equations of the planes reduce to 2z — y — 5 = 0 and 4o + 3y — 5 = 0 and solving these two
equations gives = 2, y = —1. Thus a point on the line of intersection is (2, —1,0). A vector v in the

direction of this intersecting line is perpendicular to the normal vectors of both planes, so take

v=nmn; xny=(2,—-1,—-1) x (4,3,—1) = (4, —2, 10) or equivalently we can take v = (2, —1,5). Symmetric equations for

z727y+173

the li .
e line are — 5

. The distance from a point (z,y, z) to (1,0, —2) is dy = /(z — 1)2 + y2 + (= + 2) and the distance from (z,y, z) to

(3,4,0) is d2 = \/(x — 3)2 + (y — 4)2 + 22. The plane consists of all points (z,y,z) where di = d2 = df =di <
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@-1+y"+ (242" =3+ -9’ +7* &

22 —2w 49+ 22+ 42 +5=a—6x+9°>—8y+22+25 < 4x+ 8y+ 4z = 20 so an equation for the plane is
4z + 8y + 4z = 20 or equivalently = + 2y + z = 5.

Alternatively, you can argue that the segment joining points (1, 0, —2) and (3, 4, 0) is perpendicular to the plane and the plane

includes the midpoint of the segment.

The distance from a point (z,y, 2) to (2,5,5) is d1 = \/(z — 2)2 + (y — 5)% + (z — 5)? and the distance from (z, y, 2)

to (—6,3,1) is d2 = \/(z + 6)2 + (y — 3)2 + (= — 1)2. The plane consists of all points (z,y, z) where dy = dz2 =
BB=df & @-27+@y—5"+(:—-52=(@+67+@y-9°+(-1° &
2 —dr4+y? —10y+ 22— 102+ 54 =2 + 120 +9°> — 6y + 22 — 22 +46 & 16z + 4y + 82 = 8 50 an equation

for the plane is 16z + 4y + 8z = 8 or equivalently 4z + y + 2z = 2.

The plane contains the points (a, 0,0), (0, b,0) and (0, 0, ¢). Thus the vectors a = (—a, b,0) and b = (—a, 0, ¢) lie in the
plane, andn = a X b = (be — 0,0 + ac, 0 + ab) = (be, ac, ab) is a normal vector to the plane. The equation of the plane is
therefore bex + acy + abz = abe + 0 + 0 or bex + acy + abz = abe. Notice that if a # 0, b # 0 and ¢ # 0 then we can

. . T z . .
rewrite the equation as — + % + — = 1. This is a good equation to remember!
a c

(a) For the lines to intersect, we must be able to find one value of ¢ and one value of s satisfying the three equations
1+t=2-s,1—1t=sand2t = 2. From the third we get t = 1, and putting this in the second gives s = 0. These values

of s and ¢ do satisfy the first equation, so the lines intersect at the point Pp = (1 4+ 1,1 — 1,2(1)) = (2,0,2).

(b) The direction vectors of the lines are (1, —1,2) and (—1,1, 0), so a normal vector for the plane is
(=1,1,0) x (1,—1,2) = (2,2,0) and it contains the point (2,0, 2). Then an equation of the plane is

2z —2)+2—0)+0(z—-2)=0 & x+y=2

Two vectors which are perpendicular to the required line are the normal of the given plane, (1,1, 1), and a direction vector for
the given line, (1, —1,2). So a direction vector for the required line is (1,1, 1) x (1,—1,2) = (3,—1,—2). Thus L is given

by (z,y,2) = (0,1,2) + (3, —1, —2), or in parametric form, x = 3t,y = 1 — ¢,z = 2 — 2¢.

Let L be the given line. Then (1, 1, 0) is the point on L corresponding to ¢ = 0. L is in the direction of a = (1, —1,2)
and b = (—1,0,2) is the vector joining (1, 1,0) and (0,1, 2). Then

<17 71>2> : <71>O72>

b — proj, b =(-1,0,2) — W

(1,-1,2) = (=1,0,2) — 2(1,—1,2) = (—£, 1, 1) is a direction vector

3 1

for the required line. Thus 2<75, 3 1> = (—3,1,2) is also a direction vector, and the line has parametric equations = = —3t,

y = 1+41t, z =2+ 2t. (Notice that this is the same line as in Exercise 65.)
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67. Let P; have normal vector n;. Then ny = (3,6, —3), n2 = (4, —12,8), n3 = (3,—-9,6), ny = (1,2, —1). Now n1 = 3ny,
so ny and ny are parallel, and hence P; and Py are parallel; similarly P, and Ps are parallel because ny = %ng. However, n;
and n, are not parallel (so not all four planes are parallel). Notice that the point (2, 0, 0) lies on both P and Py, so these two

planes are identical. The point (%, 0, O) lies on P> but not on P, so these are different planes.

B . . . -1 —1 1
68. Let L; have direction vector v;. Rewrite the symmetric equations for L3 as % = yT/zl =z —;

;then vy = (6, —3,12),

va = (2,1,4), vy = (3,—3,1),and v4 = (4,2,8). vi = 12v3, so Ly and Ls are parallel. v4 = 2v3, s0 Ly and Ly are
parallel. (Note that L, and L are not parallel.) L; contains the point (1, 1, 5), but this point does not lie on L3, so they’re not

identical. (3, 1,5) lies on L4 and also on Ly (for ¢ = 1), so L2 and L4 are the same line.
69. Let @ = (1,3,4) and R = (2,1, 1), points on the line corresponding to ¢ = 0 and ¢t = 1. Let
— —
P = (4,1,-2). Thena = QR = (1,—-2,-3), b = QP = (3, -2, —6). The distance is

axb 1,-2,-3) x (3,—2,—6 6,—3,4 62 + (—3)2 + 42 V61 61
d — — — —_——_—- = —_
V14 1

|a| |<17_27 _3>| |<1¢_2¢_3>| h \/12+(—2)2 +(—3)2 B
70. Let @ = (0,6, 3) and R = (2,4,4), points on the line corresponding to ¢ = 0 and ¢t = 1. Let

—_— —
P =(0,1,3). Thena = QR = (2,—2,1) and b = QP = (0, —5,0). The distance is

g laxbl 221 x 0,250 _[(5.0,-10)| _ VFFOF(I0P _ V% _5V5

[a] 1(2,-2,1)| 2=, 2P (22412 VO 3

laz1 + byr + cz1 + d| _ [3(1) +2(—2) +6(4) — 5] _ |18| _18
Va2 1 b2 1 ¢ V32 122 162 Vo

71. By Equation 9, the distance is D =

[1(=6) —2(3) —4(5) — 8 _ |40 _ 40
VT (22 + (42 V2l 21

72. By Equation 9, the distance is D =

73. Put y = z = 0 in the equation of the first plane to get the point (2, 0, 0) on the plane. Because the planes are parallel, the

distance D between them is the distance from (2, 0, 0) to the second plane. By Equation 9,

p_ U@ -60+20 -3 5 _ 5 5V

VB (07 + (@7 V56 2y 28

74. Put z = y = 0 in the equation of the first plane to get the point (0,0, 0) on the plane. Because the planes are parallel the

distance D between them is the distance from (0, 0, 0) to the second plane 3z — 6y + 9z — 1 = 0. By Equation 9,

D7|3(0)76(0)+9(0)71|7 11
/P H(62+92 V126 3VI4

75. The distance between two parallel planes is the same as the distance between a point on one of the planes and the other plane.

Let Py = (o, Yo, #0) be a point on the plane given by ax + by + cz + di = 0. Then azo + byo + czo + d1 = 0 and the
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distance between Py and the plane given by ax + by + cz + d2 = 0 is, from Equation 9,

D_ lazo + byo + czo + da] |—dy + d| |dy — da|

Va? + 0% + 2 Va2 + 2+ Va2t + 3
The planes must have parallel normal vectors, so if ax + by + ¢z + d = 0 is such a plane, then for some ¢ # 0,
(a,b,c) =t(1,2,—2) = (t,2t, —2t). So this plane is given by the equation = + 2y — 2z + k = 0, where k = d/t. By

|1 — K|

VIEt22 1 (22 & 6=[1—-kl & k="Tor—5 Sothe

Exercise 75, the distance between the planes is 2 =

desired planes have equations = 4+ 2y — 2z = 7and « 4 2y — 2z = —5.

Liiz=y=2z = 2=y (). Lez+1=y/2=2/3 = x+1=y/2 (2). The solution of (1) and (2) is

x =y = —2. However, whenz = -2,z =2 = z=-2,butx+1=2/3 = 2z = —3,acontradiction. Hence the
lines do not intersect. For L1, vi = (1,1, 1), and for L2, va = (1, 2, 3), so the lines are not parallel. Thus the lines are skew
lines. If two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew lines
would be the same as the distance between these parallel planes. The common normal vector to the planes must be
perpendicular to both (1,1,1) and (1,2, 3), the direction vectors of the two lines. So set

n=(1,1,1) x(1,2,3) = (3—2,-3+1,2 — 1) = (1, —2, 1). From above, we know that (—2, —2, —2) and (-2, —2, —3)
are points of Ly and Lo respectively. So in the notation of Equation 8, 1(—2) —2(—2)+1(—-2)+d1 =0 = d; =0and

1(=2) =2(-2)+1(-3)+do=0 = da=1

A . o 10— 1] 1
By Exercise 75, the distance between these two skew lines is D = ———— = —.
Y Vititl 6

Alternate solution (without reference to planes): A vector which is perpendicular to both of the lines is
n=(1,1,1) x (1,2,3) = (1, -2, 1). Pick any point on each of the lines, say (—2, —2, —2) and (—2, —2, —3), and form the
vector b = (0,0, 1) connecting the two points. The distance between the two skew lines is the absolute value of the scalar

projection of b along n, that is, D = [n- bl = [1:0-2-0+1-1] = L
n] VIta+1 V6

First notice that if two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew
lines would be the same as the distance between these parallel planes. The common normal vector to the planes must be
perpendicular to both vi = (1,6, 2) and vo = (2,15, 6), the direction vectors of the two lines respectively. Thus set

n=v; xvy=(36-30,4—6,15—12) = (6,2, 3). Setting t = 0 and s = 0 gives the points (1,1, 0) and (1,5, —2).

So in the notation of Equation 8,6 —2+0+d; =0 = di=-4and6—-10—6+d2 =0 = d>=10.

. . L |—4 — 10| 14
Then by Exercise 75, the distance between the two skew lines is givenby D = ———— = — = 2.
Y N e e

Alternate solution (without reference to planes): We already know that the direction vectors of the two lines are

vi = (1,6,2) and v = (2,15,6). Thenn = v1 x va = (6, —2, 3) is perpendicular to both lines. Pick any point on
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003 Questions Solutions on Absolute Max and Min



f(0,0)=4 f1,-1)=11 fn=7
f(l,%) =4.75 f(-1,1) = f(=1,-1) =11

f(&,%) = 4.75 £(0,1) =8 £(0,-1) =8

The absolute minimum is at (0, 0) since gives the smallest function value and the absolute maximum occurs at (1, —1) and (—1, —1) since
these two points give the largest function value.

Here is a sketch of the function on the rectangle for reference purposes.

\

As this example has shown these can be very long problems on occasion. Let’s take a look at an easier, well shorter anyway, problem with a
different kind of boundary.

Example 2 Find the absolute minimum and absolute maximum of f (x,y) = 2z* — y* + 6y on the disk of radius 4, z2 + y2 < 16

First note that a disk of radius 4 is given by the inequality in the problem statement. The “less than” inequality is included to get the interior of
the disk and the equal sign is included to get the boundary. Of course, this also means that the boundary of the disk is a circle of radius 4.

Let’s first find the critical points of the function that lies inside the disk. This will require the following two first order partial derivatives.
L=4x f,=—2y +6

To find the critical points we’ll need to solve the following system.




4 =0
—2y+6=0

This is actually a fairly simple system to solve however. The first equation tells us that z = 0 and the second tells us that y = 3. So, the only
critical point for this function is (0, 3) and this is inside the disk of radius 4. The function value at this critical point is,

£(0,3)=9

Now we need to look at the boundary. This one will be somewhat different from the previous example. In this case we don’t have fixed
values of  and y on the boundary. Instead we have,

2 + y2 =16
We can solve this for 2 and plug this into the z2 in f (z,y) to get a function of y as follows.
z? =16 — y?
g(y) =2 (16 —y®) —y* + 6y =32 — 3y* + 6y

We will need to find the absolute extrema of this function on the range —4 < y < 4 (this is the range of y’s for the disk....). We'll first need
the critical points of this function.

g (y)=-6y+6 = y=1
The value of this function at the critical point and the endpoints are,
g(—4) =—40 g4)=8  g(1)=35

Unlike the first example we will still need to find the values of x that correspond to these. We can do this by plugging the value of y into our
equation for the circle and solving for z.

y=—4: 2*’=16-16=0 = z=0

y=4: ?=16-16=0 = =0

y=1: 22=16-1=15 = z=4+15=+3.87

The function values for g (y) then correspond to the following function values for f (z,y).
g(-4)=-40 = [(0,—4)=—40

g(4)=38
3




Note that the third one actually corresponded to two different values for f (z, y) since that y also produced two different values of x.

So, comparing these values to the value of the function at the critical point of f (x, y) that we found earlier we can see that the absolute

minimum occurs at (0, —4) while the absolute maximum occurs twice at (—\/ 15, 1) and («/15, 1).

Here is a sketch of the region for reference purposes.

\,

In both of these examples one of the absolute extrema actually occurred at more than one place. Sometimes this will happen and sometimes
it won’t so don’t read too much into the fact that it happened in both examples given here.

Also note that, as we've seen, absolute extrema will often occur on the boundaries of these regions, although they don’t have to occur at the
boundaries. Had we given much more complicated examples with multiple critical points we would have seen examples where the absolute

extrema occurred interior to the region and not on the boundary.




1. Find the absolute minimum and absolute maximum of f (z,y) = 192z 4 y? — 4zy? on the triangle with vertices (0, 0), (4, 2) and
(—2,2).

~

We’'ll need the first order derivatives to start the problem off. Here they are,

fr = 57622 — 4y? fy =2y — 8y

We need to find the critical points for this problem. That means solving the following system.
f:=0 : 57622 —4y> =0
fy=0 : 2y(l—4z)=0 — y=0or z=—

So, we have two possible options from the second equation. We can plug each into the first equation to get the critical points for the equation.

y=0: 576z2=0 — =z=0 = (0,0)
z=%: 36-42=0 - y=43 = (43) and (§,-3)

Okay, we have the three critical points listed above. Also recall that we only use critical points that are actually in the region we are working

with. In this case, the last two have y values that clearly are out of the region (we’ve sketched the region in the next step if you aren’t sure you
believe this!) and so we can ignore them.




Therefore, the only critical point from this list that we need to use is the first. Note as well that, in this case, this also happens to be one of the
points that define the boundary of the region. This will happen on occasion but won’t always.

So, we’'ll need the function value for the only critical point that is actually in our region. Here is that value,

f (0’0) =0

Now, we know that absolute extrema can occur on the boundary. So, let's start off with a quick sketch of the region we’re working on.

(_2’2)- . y=2 -(4’2)

Each of the sides of the triangle can then be defined as follows.

Top:y=2, —2<z<4

Right:y = %m, 0<z<4

Left:ry=—2, —2<z<0

Now we need to analyze each of these sides to get potential absolute extrema for f (z,y) that might occur on the boundary.

Let's first check out the top 1y =2, 2 <a <4.

We'll need to identify the points along the top that could be potential absolute extrema for f (z, y). This, in essence, requires us to find the
potential absolute extrema of the following equation on the interval —2 < z < 4.




The critical point(s) for g (z) are,
’ 2 1
g (z) =576z —16 =0 — x:ig

So, these two points as well as the z limits for the top give the following four points that are potential absolute extrema for f (m, y)

<%72) <_l72) (—2,2) (4,2)

6
Recall that, in this step, we are assuming that y = 2! So, the next set of potential absolute extrema for f (z,y) are then,

1 20 1 52
f (E’2> =5 f (_6’2) =< £(-2,2) = —1,500 £(4,2) = 12,228

Next let's check out the right side :y = %m, 0 < z < 4. For this side we’'ll need to identify possible absolute extrema of the following function

on the interval 0 <z <4.

1 1
gx)=7f (:1:, —w) = Zm2 + 19123
The critical point(s) for the g (x) from this step are,

’()71+57327 L 5732) =0 - —0, o=t
gm—zm $7$2 T | = r=Vu, T= 1146

Now, recall what we are restricted to the interval 0 < x < 4 for this portion of the problem and so the second critical point above will not be
used as it lies outside this interval.

So, the single point from above that is in the interval 0 < < 4 as well as the « limits for the right give the following two points that are
potential absolute extrema for f (z,y).

(0,0) (4,2)

Recall that, in this step, we are assuming that y = %:r,! Also note that, in this case, one of the critical points ended up also being one of the
endpoints.

Therefore, the next set of potential absolute extrema for f (z, y) are then,




£(0,0)=0 £(4,2) = 12,228

Before proceeding to the next step note that both of these have already appeared in previous steps. This will happen on occasion but we
can’t, in many cases, expect this to happen so we do need to go through and do the work for each boundary.

The main exception to this is usually the endpoints of our intervals as they will always be shared in two of the boundary checks and so, once
done, don't really need to be checked again. We just included the endpoints here for completeness.

Finally, let's check out the left side :y = —z, —2 < a < 0. For this side we'll need to identify possible absolute extrema of the following
function on the interval —2 < x < 0.

g(z) = f(z,—z) = 2> + 18823
The critical point(s) for the g (x) from this step are,

1

g (z) = 2z + 564z% = 2z (1 + 282z) = 0 - =0, =—55

Both of these are in the interval —2 < x < 0 that we are restricted to for this portion of the problem.

So, the two points from above as well as the x limits for the right give the following three points that are potential absolute extrema for f (a:, y)

(“m3035) ©O (22

Recall that, in this step we are assuming that y = —zx! Also note that, in this case, one of the critical points ended up also being one of the
endpoints.

Therefore, the next set of potential absolute extrema for f (z, y) are then,

1 1 1
f(‘@y@) :m f(070)20 f(_272):_17500

As with the previous step we can note that both of the end points above have already occurred previously in the problem and didn’t really
need to be checked here. They were just included for completeness.

Okay, in summary, here are all the potential absolute extrema and their function values for this function on the region we are working on.




1 20 1
f<ga2>:T f<_gaz
1 1
f0.0)=0 (oo

52
) =5 £(=2,2) = —1,500 £(4,2) = 12,228
1
~ 238,572

From this list we can see that the absolute maximum of the function will be 12,228 which occurs at (4, 2) and the absolute minimum of the

function will be -1,500 which occurs at (—2, 2).

\,




2. Find the absolute minimum and absolute maximum of f (z,y) = (9:c2 - 1) (1 + 4y) on the rectangle given by —2 < z < 3,
-1<y<4

,

We’'ll need the first order derivatives to start the problem off. Here they are,

fo =182 (1 + 4y) fy=4(92" - 1)

We need to find the critical points for this problem. That means solving the following system.

fz=0 : 18z(1+4y)=0
) 1
fy=0 : 4(92°-1)=0 — z=tg

So, we have two possible options from the second equation. We can plug each into the first equation to get the critical points for the equation.

L isaray=0 5 4= o (11
T3 vI= y=77% 3' 1

ol gy =0 5 gL = L
Ty vr= y=73 3' 1

Both of these critical points are in the region we are interested in and so we’ll need the function evaluated at both of them. Here are those
values,




Now, we know that absolute extrema can occur on the boundary. So, let’s start off with a quick sketch of the region we’re working

on. y
(-2.4) 4 (3.4)

(]

Each of the sides of the rectangle can then be defined as follows.

Topy=4, -2<z<3

Bottom:y=—-1, —2<2<3

Right:z =3, —-1<y<4

Left:xz =—-2, —-1<y<4

Now we need to analyze each of these sides to get potential absolute extrema for f (x,y) that might occur on the boundary.

Let's first check out the top : y =4, 2 <z <3.

We'll need to identify the points along the top that could be potential absolute extrema for f (a:, y). This, in essence, requires us to find the
potential absolute extrema of the following equation on the interval —2 < z < 3.




The critical point(s) forg (z) are,
g (z) = 306z = 0 — z=0

This critical point is in the interval we are working on so, this point as well as the x limits for the top give the following three points that are
potential absolute extrema for f (z,y).

(Oa 4) (_27 4) (374)
Recall that, in this step, we are assuming that y = 4! So, the next set of potential absolute extrema for f (:c, y) are then,

£(0,4) = —17 F(=2,4) =595  f(3,4) = 1360

Next, let's check out the bottom : y = —1, —2 < z < 3. For this side we'll need to identify possible absolute extrema of the following
function on the interval —2 < z < 3.

g9(z) = f(z,~1) = -3 (-1 +92°)
The critical point(s) for the g (x) from this step are,
g (z) = —54z =0 — z=0

This critical point is in the interval we are working on so, this point as well as the x limits for the bottom give the following three points that are
potential absolute extrema for f (z,y).

(Oa_l) (_27_1) (37_1)
Recall that, in this step, we are assuming that y = —1! So, the next set of potential absolute extrema for f (93, y) are then,

£(0,-1) =3 F(=2,—-1) = —105 £(3,—-1) = —240

Let's now check out the right side : z = 3, —1 < y < 4. For this side we'll need to identify possible absolute extrema of the following
function on the interval —1 < y < 4.

h(y) = f(3,y) = 80 (1 +4y)

The derivative of the h (y) from this step is,

K (y) = 320




In this case there are no critical points of the function along this boundary. So, only the limits for the right side are potential absolute extrema
forf (z,y).

(3,-1) (3,4)
Recall that, in this step, we are assuming that z = 3! Therefore, the next set of potential absolute extrema for f (z, y) are then,
f(3,-1)=-240 f(3,4) = 1360
Before proceeding to the next step let’s note that both of these points have already been listed in previous steps and so did not really need to

be written down here. This will always happen with boundary points (as these are here). Boundary points will always show up in multiple
boundary steps.¥

Finally, let's check out the left side : x = —2, —1 < y < 4. For this side we’ll need to identify possible absolute extrema of the following
function on the interval —1 < y < 4.

h(y) = f(=2,y) = 35(1 + 4y)
The derivative of the h (y) from this step is,
R (y) = 140

In this case there are no critical points of the function along this boundary. So, we only the limits for the right side are potential absolute
extrema for f (z,y).

(-2,-1) (—2,4)
Recall that, in this step, we are assuming that z = —2! Therefore, the next set of potential absolute extrema for f (a:, y) are then,
f(—2, —1) = —105 f(—2,4) = 595

As with the previous step both of these are boundary points and have appeared in previous steps. They were simply listed here for
completeness.

Okay, in summary, here are all the potential absolute extrema and their function values for this function on the region we are working on.

f(0,4) =-17 f(—=2,4) =595 £(3,4) = 1360
£(0,-1)=3 F(=2,-1) = —105 £(3,—1) = —240




From this list we can see that the absolute maximum of the function will be 1360 which occurs at (3, 4) and the absolute minimum of the
function will be -240 which occurs at (3, —1).
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JoF aF
dz ax dz (Ty
ox  OF ay  oF

oz oz

Again, aversion of the Implicit Function Theorem stipulates conditions under which
our assumption is valid: If F is defined within a sphere containing (a, b, c), where
F(a, b, c) = 0,F.(a, b, ¢) # 0, and F,, Fy, and F. are continuous inside the sphere, then the
equation F(x,y, z) = 0 defines z as a function of x and y near the point (a, b, ¢) and this
function is differentiable, with partial derivatives given by [7].

a i)
[ EXAMPLE 9 | Finda—ianda—;ifx3+ v+ 2%+ Bxyz = 1.

SOLUTION LetF(x,y, z) = x® + y* + z* + 6xyz — 1. Then, from Equations 7, we have

The solution to Example 9 should be
compared to the one in Example 4 in
Section 14.3.

m Exercises

0z R 3P+ 6yz X242y
X F. 3z% + 6xy 22 + 2xy
oz _ K 3y tex Yy 4 2x —
ay F. 3z% + 6xy 22 4+ 2xy

1-6 Usethe Chain Ruleto find d-/dt oregdie

Gz:x2+y2+xy, x=snt, y=¢'
@z:cos(x+4y), x=5t4 y=1/t
@z:m, x=Int, y= cost
@z=tan’1(y/x), x=¢, y=1—¢"

= z " a " a oa

@f 2 = f(x,y), where f is differentiable, and
x=g(t) y = h(t)

g3 =2 h(3 =7
g(3) =5 h@E) = -4
(2,7 =6 f,(2,7) = -8

find dz/dt whent = 3.

7-12 Use the Chain Rule to find 9z/ds and 9z/t.
\ z = x%° Xx=scost, y=ssint

z=arcsin(x —y), x=s?+1t% y=1-— 2st

9.|z=sinfcosp, 6=st? ¢=-s
z=e" x=g/t, y=t/s
M.|z=¢€"cosh, r=¢g, 0=.52+12

=tan(u/v), u=2s+3t, »=3s— 2t

1. Homework Hints available at stewartcal culus.com
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14.5 The Chain Rule

. dz  Ozdx | Ozdy

= 2 2 €r= = t —_— = — — _—— = ; a t
1 z=a"+y +uoy, v=sint, y=e = a " ordi "oyt (2z +y) cost + (2y + x)e
2. z=cos(z +4y), v =5t y=1/t =

dz  Ozdx 82@7

T ondi T oy~ —sin(z + 4y)(1)(20t%) + [—sin(z + 4y)(4)](—t %)

. 4 . 4 .
= —20t%sin(x + 4y) + 7 sin(z + 4y) = (t_2 - 20t3> sin(z + 4y)

.z=/1+a2+y? x=Int, y=cost =

dz Ozdx Ozdy 2, 2v—1/2 1, 2, 3v_1/2 . 1 . .
L _ 228 20 _ 1 22) -~ +1(1 2)(—sint) = ———-— (L _ ysint
dt Oz dt Oydt s(1+2%+97) (22) t+2( +x° +y7) (2y)(—sint) ey <t ysm)

t

4 z=tan (y/x),r=cLy=1—¢"' =
dz Ozdr  Ozdy 1 _ov ¢ 1 4
Lo 2 (- . _—(1/2) - (— -1
T i nral wr vy CA LD Al wruy oy cA VAR SO e
—t ot
___ Y et 1 R ye
2?2 4+ y? x+y?/z 22 4+ y?

5 w=gze’?, 1 =1, y=1—t, 2=1+2t =

dw Owdr Owdy OJwdz y/z 1 y T  2zy
ke Bt A o .ot v/ Z) . (=1 y/z(__)g: y/z(op 2 _ 229

dt Or dt Oy dt 0z dt ¢ +ae z (1) + e 22 ¢ z 22
6. w=1In\/22 +y2+22 = LIn(z® + y* + 2°), z = sint, y = cost, z = tant =

dw  Ow d_a: ow d_y ow dz

—_— = = - ——*1 2736 cost-i—l 27?; (—sint)—&—l 272 sec?t
dt — Oxdt  Oydt Ozdt 2 x24+y?+ 22 2 24y + 22 2 a2 4y2 422
7zcost—ysint+zse02t

- 22+ y? + 22

7. 2 = 2%y, x = scost, y = ssint =

0z 0z 0x az@

=" iad — 2213 t+ 3222 sint
ds Oxds 0Oy dos y” cost + 3a7y” s

8z_az% %@

o st "oy ot = (22y°)(—ssint) + (32%y?)(s cost) = —2sxy®sint 4 3sx?y® cost

8. z=arcsin(z —y), v =s>+1t>, y=1-—2st =

0z 0z0x 0z0y _ 1 1 2s + 2t

02 _020v 020y _ 1 gy L gy (g9 _ 25F20
T PR we sy A BN e e AR R Y, w s
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9. z =sinfcos¢, 0=st?, =5t =
% = %? g; g¢ (cos O cos ¢) (%) + (—sin @ sin ¢)(2st) = t? cos  cos ¢ — 2st sin § sin ¢
s s
% = %% g; aa(f (cos @ cos ¢)(2st) 4 (—sin 6 sin ¢)(s*) = 2st cos O cos ¢ — s sin 6 sin ¢
0. 2 =€, 2=s/t, y=1t/s =
0z 0z0x 020y _ , .40 ot2yyg g2y _ ooy (12
ds Oz s  Oyods (e J(1/6) + (2 J(ts™) =e t s?
0z 0z0x  0z0y _  ,iop, o o2y a2y (28
o oror Taga - @ stT) (/) =€ s 2
M. z=¢"cosb, r=st, 0 =+/s2+t2 =
% = %% + %% =e"cosl-t+e (—sinh) - 3(s? +12)71/2(25) = te" cos — " sin 0 - \/S%?
=e" (tcos@ — \/ﬁ sinH)
%: gigz %%—e cosf-s+e” (fsin@)-%(52+t2)’1/2(2t):sercos97ersin9-\/32;W
=e" (scos@ — \/S+W sin9)
12. z =tan(u/v), u=25+3t, v=3s—2t =

0z 0z 0u , 0z 0v _

25 = 9uds T 90 = 5€C 2(u/v)(1/v) - 2 + sec? (u/v)(—uv™?) - 3
2 L, (u 3u oru\ _2v—3u _ ,/u
B (2) (1)« 2 (1)

0z 0z0u  0z0v -

%= uar Toear = 5C 2(u/v)(1/v) - 3 + sec?(u/v)(—uv~2) - (=2)

3 L/u 2u
= —sec” | — +—Zsec
v v v

afu\  2u+3v
(5)="%

u
sec2 (—)
v

13. When t = 3, z = g(3) = 2 and y = h(3) = 7. By the Chain Rule (2),

s _0f do
dt — Oz dt

of dy
dy dt

8W

14. By the Chain Rule (3), —

W.(1,0) = Fu(u(1,0),
(=1)(=2
ow
ot

Similarly, ——

Wi(1,0) = Fu(u(1,0),

= (=1)(6)

_owou
T Ou ot

+(1

=f(2,7)9'(3) + £,(2,T) W' (3) =

oW ou
" Ou 0s Jv 0Os

v(1,0)) us(1,0) + Fo(u(l

)+ (10)(5) = 52

oW v
v ot
v(1,0)) ue(L,0) + Fu (u(l
0)(4) = 34

,0),v(1

,0),v(1

(6)(5) + (—8)(—4) = 62.

+ =2 Then

,0)) v5(1,0) = Fu(2,3)us(1,0) + F,(2,3)vs(1,0)

,0) vi(1,0) = Fu(2,3)ur(1,0) + Fo(2,3)v:(1,0)
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m Exercises

SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 943

11-17 Find the directional derivative of the function at the given
point in the direction of the vector v.

1 fGry) =e'siny, (0,7/3), v=(-6,8)

. (1L2), v=(3,5)

(x,3) = o

@9(1), @ =p'—pr¢, 2,1, v=i+3j

g(r,s) = tan"'(rs), (1,2), v=35i+10j
gf@c,y, 2) =xe' + ye' + ze*, (0,0,0), v=(51-2)
Q, /(r0n2) = Viz, (.2.6) v=(-1-22)

a0 114 : nDosin o

‘ R
19.) Find the directional derivative of f(x,y) = v/xy at P(2, 8) in
the direction of QO(5, 4).
Find the directional derivative of f(x, y, z) = xy + yz + zx at
P(1, —1, 3) in the direction of Q(2, 4, 5).
21-26 Find the maximum rate of change of /" at the given point and
the direction in which it occurs.
() =4y, (41
(s.1) = te”, (0,2)
S(x,y) = sin(xy), (1,0)
QTf(X’y, 2=+ (1L1,-1)
Py 5

ailable at stewartcalculus.com
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. . - L | _ 1 _/_3 4
unit vector in the direction of v is u = T (=6,8) = 15 (—6,8) = <7g» g), S0

Duf(0.7/3) = Vi0.7/3) - u=(F.4) - (-3.4) = -2F + & = 45

y? —a? 2zy

(T )

2 o) - (@ +7)(1) — 2(20) 0 (2y) )

@
21y = Vizy) = < (@2 + y?)2 @+ 92)?

V£(1,2) = (£, —%), and a unit vector in the direction of v = (3,5) isu = m (3,5) = <733—4,753—4>, S0
Duf(,2) =VIL2) - u=(h—%) (S 7) = 5om ~ "o —

13. 9(p,q) =" —1°¢* = Vglp.q) = (4° —2p¢®) i+ (=3p°¢%)j, Vg(2,1) = 28 — 12, and a unit

vector in the direction of v is u = ———(

< any 1 (s as
=T i+3j) = 5+3j).s0

10

Dug(2,1) = Vg(2,1) - u= (281 - 12j) - = (i +3j) = —k= (28 — 36) = — %= or — 2410,
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_ 1 . 1 . s . T .
14. g(r,s) = tan"(rs) = Vg(r,s) = (1 FEAE ~S) i+ <1 e 'T).] =1 +7‘2821+ T2

Vg(1,2) = 2i+ 1 j, and a unit vector in the direction of v is u = \/=(51 +10j) = 5\1/3(5i+ 10j) = % i+ %j,

524102

50 Dug(1,2) = Vg(1,2) - u=(2i+ 1)) (Fit+Zj) =2+ 2= Lzor 24

15. f(z,y,2) = we¥ +ye* + ze* = Vf(x,y,2) = (e + ze*, ze’ +e*,ye” +¢%), Vf(0,0,0) = (1,1, 1), and a unit

vector in the direction of v is u = W(Ey —2) = T (5,1,-2), s

Du £(0,0,0) = V£(0,0,0) - u=(1,1,1) - o= (5.1, ~2) =

16. f(z,y,2) = Vayz =

Vi) = (Hay) 2 gz days) V2 0z d(ays) 2 ay)

I
—
N
<
=]
<
o
no
Q‘g
NI
<
®n
no
8
<
<
©
~———

V£(3,2,6) = <23/2ﬁ1 23/5%Y 2jﬁ> — <1,%,%>, and a unit vector in the
direction of v is u = J+—4<71v7272> = (-3 -%3)

T+art

Duf(3,2,6) = Vf(3,2,6) - u=(L,3.3)- (-5.-5 ) = -5 -1+ =-1L

0 fe)=Vay = Vi) = (50 0). 5@ @) = <2f 2\/_> 0 Vf(2,8) = (1)

—
The unit vector in the direction of PQ = (5 —2,4—8) = (3, —4) isu = (£, -2) s0
Dy f(2,8) =Vf(2,8) - u=(1,4) (2, -2) =2

2. f(z,y,2) =zy+yz+z2e = Vf(r,y,2)={y+zx+z2y+z),s0Vf(l,—1,3)=(2,4,0). The unit vector in the

direction of PQ = (1,5,2) isu = \;ﬁ(L 5,2),50 Dy f(1,-1,3) = Vf(1,-1,3) - u = (2,4,0) - %(1, 5,2) =
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21.

22,

23.

24.

O CHAPTER14 PARTIAL DERIVATIVES
flay) =dyvz = Vi(x,y) = <4y . %m"/2¢4ﬁ> = (2y/VZ,4V7).
Vf(4,1) = (1,8) is the direction of maximum rate of change, and the maximum rate is |V f (4, 1)| = v/T + 64 = /65.
fls.t) =te™ = Vf(s,t) = (te’ (), te” (s) + e (1)) = (e, (st + 1)e*").
V£(0,2) = (4,1) is the direction of maximum rate of change, and the maximum rate is [V £(0,2)| = /16 + 1 = V/17.

flz,y) =sin(zy) = Vf(z,y) = (ycos(zy),zcos(zy)), Vf(1,0) = (0, 1). Thus the maximum rate of change is

|V f(1,0)| = 1 in the direction (0, 1).

z+y
z

11 =4y
2’2" 2

fz,y,2) = = Vf(z,y,2) = < >,Vj(l,1, —1) = (—1, -1, —2). Thus the maximum rate of

change is [V f(1,1,~1)| = I+ 1 + 4 = v/ in the direction (—1, —1, —2).
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m Exercises

1-4 A region Ris shown. Decide whether to use polar coordinates 14.) [, x dA, where D is the region in the first quadrant that lies
or rectangular coordinates and write [, (x, y) dA as an iterated between the circles x* + y* = 4 and x* + y? = 2x
integral, where f is an arbitrary continuous function on R.

i @ yl A 15-18 Use adouble integra to find the area of the region.
y=1—-x
0 4 x
-1 0 1 x
3. y y
6
1,,
3
3 0 | % 0 X

5-6 Sketch the region whose areais given by the integral and eval-
uate the integral .

@:;/4 Lzr dr do J:/z J:g"a r dr do

7-14 Evauate the given integral by changing to polar coordinates.

{f5 x?y dA, where D isthe top half of the disk with center the
origin and radius 5

ﬁ {Jx (2x — y) dA, where Risthe region in the first quadrant
enclosed by the circle x? + y? = 4 and the linesx = 0 and
y=x

9. (f,sin(x* + y?) dA, where Risthe region in the first quadrant
between the circles with center the origin and radii 1 and 3

2

10. (|, y dA, where Risthe region that lies between the
JJIR XZ

+y?
circlesx? + y>=a’andx*> + y?=b’with0<a<b

fJ €7 dA, where D is the region bounded by the
semicirclex = /4 — y? and the y-axis

@;fo cosy/x2 + y2 dA, where D isthe disk with center the

rigin and radius 2

13. [[, arctan(y/x) dA,

whereR={(x,y) | 1=x*+y?’<4, 0sy=<x}

1. Homework Hints available at stewartcal culus.com
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67. [[, (aa® +by® + Va2 —a? ) dA = [[,az® dA+ [[, by dA+ [[, Va® — 2% dA. Now az® is odd with respect
to 2 and by is odd with respect to y, and the region of integration is symmetric with respect to both & and ¥,
so [[,ax®dA = [[, by®dA =0.
s V/aZ = £2 d A represents the volume of the solid region under the
graph of z = v/a? — z2 and above the rectangle D, namely a half circular
cylinder with radius a and length 2b (see the figure) whose volume is
1. 7r?h = ma®(2b) = wa®b. Thus

I (az® +by® +vVa? —27) dA = 0+ 0 + 7a’b = ma®b.

68. To find the equations of the boundary curves, we require that the
z-values of the two surfaces be the same. In Maple, we use the command
solve (4-x"2-y"2=1-x-y,y); and in Mathematica, we use

Solve[4-x"2-y " 2==1-x-y, y]. We find that the curves have z

1+ 13 + 4z — 422
2

equations y = . To find the two points of intersection

of these curves, we use the CAS to solve 13 + 4z — 422 = 0, finding that

T = %. So, using the CAS to evaluate the integral, the volume of intersection is

[(4—a* 4"~ (=2~ y) dyde = 2T

(1+v1a)/2 (1+\/13+4m—412 )/2
/(1—@)/2 </(l—\/13+4.'r,—4.7:2)/2

15.4 Double Integrals in Polar Coordinates

1. The region R is more easily described by polar coordinates: R = {(r,0) |0 <r <4,0 <60 < 3T}

Thus [f,, f(z,y)dA = 03“/2f04 f(rcos®,rsin®)rdrdo.

2. The region R is more easily described by rectangular coordinates: R = {(x y)|-1<2z<1,0<y<1-— xz}.
Thus [ [, f(z,y)dA = fil fol e f(x,y) dy dx.

3. The region R is more easily described by rectangular coordinates: R = {(x, y) | -1<2x<1,0<y< %m + %}

Thus ffR f(z,y)dA = fjl ézﬂ)/z f(z,y) dy dz.

4. The region R is more easily described by polar coordinates: R = {(r, 0)3<r<6, —

[NIE]
IN
S
IN
[SIE]
——

Thus [[, f(z,y)dA = j:/rj2 j36 f(rcos6,rsinf)rdrdo.
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5. The integral |’ :;4/ !

J; 12 7 dr df represents the area of the region
R={(r,0)|1<r <2 7m/4 <60 < 3m/4}, the top quarter portion of a
ring (annulus).

3m/4 2 _ [ r3n/4 2
S rarao= (125t ao) (f7 rar)

=[O B = (- ) 3U-D =58 =%

6. The integral [, 250 1 dr dO represents the area of the region R = {(r,0) | 1 <7 < 2sinf, 7/2 < 6 < x}. Since

2Jo
r=2sin = r?=2rsinf < 2°+y*=2%y < 7
22 + (y — 1)® = 1, R s the portion in the second quadrant of a disk of :
radius 1 with center (0, 1). R
S 3 rdrdo = |7, [4r?] 20" do = [T, 2sin”0.do
:f:/Q 2. 2(1—cos20)df = [0 — %sin%’]:/z e 0 x

=r—-0-%2+40=%

7. The half disk D can be described in polar coordinates as D = {(r,0) | 0 <7 < 5,0 <0 < 7}. Then
[f, ?ydA =[] fos (rcos0)*(rsin0)rdrdf = ( ;" cos® 0'sin0 db) (f; r d'r)

= [eos®o]] [7]5 = —3(-1 1) 625 = 23

8. The region R is é of a disk, as shown in the figure, and can be described by R = {(r,0) | 0 <r < 2,7/4 <0 < 7/2}. Thus

[ (22 —y)dA = [T/} [2(2r cos — rsing) rdrdf

/4

= <f:/f(2 cos 0 — sin 0) da) ( 22 dr)

= [2 sin 0 + cos 9] :;;21 [%TBE

(@H0-VE-F)(3) - £ -1v2

9. [[ysin(z® +y*)dA = Oﬂ/z fla sin(r?) rdr df = (fOW/Q d09) (ff rsin(r?) dr)
015 ot

= (%) [-3(cos9 — cos1)] = F(cos1— cos9)

2 2m b : 2 2m b
10. // L dA= wrdrdez(/ sin29d6)</ v'dr)
RT*TY 0o Ja r 0 a

= 751~ cos20)d6 [*rdr = L [0 — §sin20]27 [Lr]"

$@2r—0-0) [ —a®)] =30 —d%)
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W [l dA = [0, [Fe  rdrdo =[5, d0 [ re”" dr
= (0], [~4e ] = ()t - ) =5 - e
12. [, cos \/22 + y2dA = foz" f02 cosVr2rdrdf = '02“ do f; 7 cos 7 dr. For the second integral, integrate by parts with
u=r,dv=cosrdr. Then [ cos /22 +y2dA = [9]3" [rsinr + cosr]l = 2m(2sin2 + cos 2 — 1).

13. R is the region shown in the figure, and can be described

by R={(r,0) | 0 <6 < /4,1 <r <2} Thus

[ arctan(y/z) dA = ”4 > arctan(tan ) r dr d6 since y/x = tan 6.
1

Also, arctan(tan 6) = 0 for 0 < < m/4, so the integral becomes

/4 (2 /4 2 /4 2 g2
S fRordrdo = [7/*0do [Prdr=[367]7" [37]) = 55 3 = &
1, //sz_ // vid - [ s
2?2 +y% <4 (z—1)2+y%<1
z>0,y>0 y>0

= [T (202 cos Odrdf — [ [7°°°% r2 cos O dr df

[/ L(8cos0) do — [T/ 1(8cos’ 0) df

=% S[cos®Osinf + 2 (¢9+sm€cos¢9)]
— 330+ 3(3) - 25
15. One loop is given by the region
D ={(r,0)|-7/6 <0 <7/6,0 <r < cos30},so the area is 9—Z
"%
/6 cos 360 /6 1 r=cos 36 ’_,—'
// dA = / / rdrdf :/ {—rz} do
/6 _x6 12 1=
/6 /6 \\\
/ L cos?30d0 = 2/ 1 <1+C7°S69> do .
—7/6 2 0 2 2 9=7€
/6
1 1. m
= 5{9-&- gSlnGQ]O =1

16. By symmetry, the area of the region is 4 times the area of the region D in the first quadrant enclosed by the cardiod

r =1 — cos# (see the figure). Here D = {(r,0) |0 <r <1 —cos0,0 < 6 < 7/2}, so the total area is

AAD) =4 [, dA=4 [/ [170 rdrdg = 4 [T/ [4r2]7 227" ap

r=1-—cos 6 r=1+cos 6

=2 foﬂ/z(l —cos0)%df = 2 foﬁ/z(l —2cos 0 + cos? 0) df

:2]’0”/2 [1—2cosf+ 3(1+ cos20)] do

:2[072sm9+ =0+ —sm29rr/2

=2(2-24+%)=2% -4

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



TABLE OF CONTENTS

49

007 Questions Solutions MASS Flux



divergence
theorem much

<
st,XYZ as easier
Sis the cone with parametrrcequatons x—=u<Tos v,

y=usinp,z=u0su<1,0<v<7/2

7. [y dS Sis the helicoid with vector equation
r(u,v) = (Ucosv,Usinv,v),0 suU<1,0<v <
8 [ +y’)dS
Sis the surface with vector equation
r(u,v) = Quy,u> — > u> + ¥y, Ul + ¥ <1
[ x?yz dS
Sis the part of the plane z = 1 + 2x + 3y that lies above thk
rectangle [0, 3] X [0, 2]
10. ([ xzdS
Sis the part of the plane 2x + 2y + z = 4 that lies in the firgt
octant

1) [[;xdS
Sis the triangular region with vertices (1, 0, 0), (0, —2, 0),
and (0, 0, 4)

12. ([jydsS
Sis the surface z = 2(x*2 + y¥?), 0 = x< 1,0<y< |
13. [[(x*z*dS
Sis the part of the cone z> = x* + y? that lies between the
planes z =l and z = 3

14. Ji]nszds
Sisthe surface x=y + 2z, 0<ys<1,0<z=<1

15.) [,y dS
Sis the part of the paraboloid y = x* + z* that lies inside the
cylinder x> + 22 = 4

16. [|sy*dS
Sis the part of the sphere x> + y* + z> = 4 that lies
inside the cylinder x> + y* = 1 and above the Xy-plane

17. [[{(X°z + y’z)dS
Sis the hemisphere x> + y? + 22 =4,z =0

18. US xz dS
Sis the boundary of the region enclosed by the cylinder
y?> + z2 = 9 and the planes X = 0 and X + y = 5
2. [((x* +y* +22)dS

sz + x*y) dS
Sis the part of the cylinder y* + z* = 1 that lies between the
planes X = 0 and X = 3 in the first octant

Sis the part of the cylinder x> + y* = 9 between the planes
z = 0and z = 2, together with its top and bottom disks

21-32 Evaluate the surface integral [[; F - dS for the given vector
field F and the oriented surface S. In other words, find the flux of F
across S For closed surfaces, use the positive (outward) orientation.

@F(x, y,z) = ze¥ i — 3ze¥j + xyk,

Sis the parallelogram of Exercise 5 with upward orientation

SECTION 16.7 SURFACE INTEGRALS 121
22. F(x, Y,2) =zi+yj+ xk,
Sis the helicoid of Exercise 7 with upward orientation

@(x, y,z) = xyi+ yzj + zxk, Sis the part of the
paraboloid z = 4 — x> — y? that lies above the square
0 <x=1,0=<y= 1, and has upward orientation

20 F(x,y,z) = —xi—yj + 2°k,
Sis the part of the cone z = /x> + y? between the planes
z =1 and z = 3 with downward orientation

(%y,2) =xi—zj+yk
Sis the part of the sphere X* + y? + z? = 4 in the first octant,
with orientation toward the origin

F(xy,z) =xzi + Xj + yk,
Sis the hemisphere x> + y* + z? = 25, y = 0, oriented in the
direction of the positive y-axis

Fxy,2) =yj—zk
Sconsists of the paraboloid y = X* + z2,0 <y < 1,
and the disk x> + z> < 1,y =1

(3

B~E(x,y,z) = xyi + 4x?j + yzk, Sis the surface z = xe’,
= X < 1,0 <y = 1, with upward orientation

29. F(X,Y,z) = Xi +2yj + 3z Kk,
Sis the cube with vertices (+1, £1, *£1)

30. F(X,Y,z) =Xi+Yyj+ 5k, Sistheboundary of the region
enclosed by the cylinder X* + z* = 1 and the planes y = 0
andx +y=2

31. F(x,y,2) = X*i + y?j + 2k, Sis the boundary of the solid
half-cylinder 0 <z < /1 —y?,0 = x<2

F(xy,2) =yi+ (z =y ]+ xk,

Sis the surface of the tetrahedron with vertices (0, 0, 0),
(1,0,0), (0,1, 0),and (0,0, 1)

33. Evaluate [Jg (X* + y* + z°) dScorrect to four decimal places,
where Sis the surfacez = xe’, 0 = x< 1,0 <y =< 1.

34. Find the exact value of [f;x*yz dS, where Sis the surface
z=Xxy,0sx=s1,0sy=s<1

35. Find the value of [fx*y*z>dS correct to four decimal places,
where Sis the part of the paraboloid z = 3 — 2x> — y? that
lies above the Xy-plane.

36. Find the flux of
F(x,y, z) = sin(xyz) i + x’yj + z%°k

across the part of the cylinder 4y> + z> = 4 that lies above
the Xy-plane and between the planes X = —2 and X = 2 with
upward orientation. Illustrate by using a computer algebra sys-
tem to draw the cylinder and the vector field on the same
screen.

31. Find a formula for [ F - dS similar to Formula 10 for the case
where Sis given by Y = h(X, z) and n is the unit normal that
points toward the left.
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6. r(u,v) = ucosvit+usinvj+uk,0<u<10<wv<7/2and

ry Xr, = (cosvi+sinvj+k) x (—usinvi+ucosvj) = —ucosvi—usinvj+uk =

ry X Tyl = Vu2cos2 v + u2sin? v + u2 = v2uZ = v/2 u [since u > 0]. Then by Formula 2,
[fszyzdS = [[,(ucosv)(usinv)(u) |y X r,] dA:fO1 Uﬂ/Q(u3sinvcosv)-\/§udvdu
=2 [} utdu [*sinveosvdo = V2 [td®], [4 sinzvror/2 —VZ.-1.1-13
7. r(u,v) = (ucosv,usinv,v),0 <u <1,0 <v < 7and
r, X r, = (cosv,sinv,0) X (—usinv,ucosv, 1) = (sinv, —cosv,u) =
ry X Iyl = \/m: VuZ + 1. Then
[fsydS= [[,(usinv) |r, x r,| dA:fU1 fow(usinv)‘\/iﬂ_—i-ldvdu:fol uvuZ +1du [ sinvdv

= [%(u2 +1)3/2K [~cosv]y = 2(2%/2—1)-2=2(2v2 - 1)

8. r(u,v) = <2uv,u2 — v+ v2>, u? +v? < 1and

Ty X Ty = (20, 2u, 2u) X (2u, —2v,20) = <8uv,4u2 — 4v? —4u® — 4v2>, S0

[ty X ro| = /(8uv)? + (du? — 402)2 + (—4u? — 4v2)2 = \/64uv? + 32u? + 320%

= VAT = 43+ 0?)
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Then
[fs(@® +y*)dS = //D [uv)? + (2 = v%)?] |ru x 1o| dA = //D(4u2v2 +ut = 2u%0% 4+ 0*) - 4V2(u? + 0?) dA
= 4\/§//D(u4 +2u%0® +0*) (U 4+ 0v*) dA = 4\/5//[)@2 + 0% dA = 4V2 77 [1(r?)® rdrdd
=4V2[27d0 [T dr = 4V2 07 (48], =4V2 2n- L =21

9. 2=1+4+2x+ 3yso 9z = 2and% = 3. Then by Formula 4,
oz Jdy

Il 2?yzdS = //xyz“ g; Bz +1dA fo Ozy1+2x+3y)\/4+9+1dyd1

= VI ] [2(aPy + 227y + 3m2y2)dydx = VI [ [$22y? + 2Py +x2y3y/ 2 dx
= V14 [(102 + 42®) do = VT4 [Ra? + 2']} = 171 V14
10. S is the part of the plane z = 4 — 22 — 2y over the region D = {(z,y) | 0 < 2 < 2,0 <y <2 — z}. Thus

[fg xzdS= [[, x(4 -2z —2y) \/(=2)2 + (-2)2 +1 dA—SfO 7" (4a — 22 — 22y) dy da

—3f0 [4xy — 227 y—xu]y e x:3f02 [12(2—2) —22°(2—2) —2(2 - 2)*] do
—3f0 (2 — 42” + 4z) dz = 3 [12* —%13—5-2;702]3:3(4—%—&-8):4

11. An equation of the plane through the points (1,0, 0), (0, —2,0), and (0,0, 4) is 4z — 2y + z = 4, so S is the region in the

plane z =4 — 4z + 2y over D = {(z,y) | 0 < 2 < 1,22 — 2 < y < 0}. Thus by Formula 4,

[fszdS=[[, 2z /(02 + @2+ 1dA= V21 [ [, , xdyde =21 [} [2y]'=), , dz
:\/ﬁfol(—2z2+2z)d:z::\/ﬁ[—§x3+x2]é:\/ﬁ(—§+1) =¥
12. z = 2(2®* + y*/?) and
[swdS=[fpu /(D) + (Vi)* + 1dA = [} [y VEFyFTdedy
= o u[3@+y+ 1)3/2]:; dy = fy 3y[y+2)°2 - (y+1)*?] d
Substituting w = y + 2 in the first term and ¢ = y + 1 in the second, we have

3 2
7
ffsudS— 2 fg S/Zdu 2 fl t3/2 di = 2 {2 W7 — 4u5/2}2 _ %[%t /2 _ §t5/2}1

%{%(37/2 —7/2)  (35/2 - 9/2) L 2(97/2 1) 4 2(25/2 — 1)]

S (VB4 AVE- &) = s (0VE +4VE-2)

13. S is the portion of the cone 2% = x2 + 2 for 1 < z < 3, or equivalently, S is the part of the surface z = /22 + y2 over the

region D = {(z,y) | 1 < 2® +y* < 9}. Thus
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2 2
// z22%dS = // (2% 4 y°) — ) + | == +144
s D V2 +y? 2 + y?
o 2, 2 o 22497 _ 2, 2 2 _ ot 2, 2
= 2 (2" +y N 55 +1dA= V222 (2% + y?)dA =2 (rcos@)”(r°) rdrdo
D 5ty D o )1

_ ﬂfozvr cos? 0do f13 rPdr =+/2 [%9 + i sin 26} 3” [é?ﬁ]? =V2(n)- %(36 -1)= —3643\/5 ™

14. Using y and z as parameters, we have r(y, 2) = (y +22%)i+yj+ 2k, 0<y <1,0< 2 < 1.

Thenry xr. = (i+j) x (4zi+ k) =i—j—4zkand|ry X r:| =2+ 1622. Thus

[fszdS = [} Jy 2 VTF 62 dydz = [} 22T T627 dz = [ - 32+ 16292 = £ (18%2 - 27%) = B V3.

1
0

15. Using = and z as parameters, we have r(z, 2) = zi+ (2% + 2%) j + 2k, 2> + 2* < 4. Then

re Xr. = (i+22j) x (22j+k) =22i—j+22kand |r, X r.| = V422 + 1+ 422 = \/1 + 4(22 + 22). Thus

[lsydS=[[ (902—&—,22)\/1—i-4(x2—l—zz)dA:f027r 027"2\/1+4r2rdrd0: 02"d¢9 f02r2\/1+4r2rdr

224+22<4
=2r [2r2VI+4rZrdr  [letu=1+4r = r?=1(u—1)and Idu=rdr]

=2 f117 Tu—1)Vu- sdu= %7 fl”(uS/2 —u?) du
1

7
_ o125z 2,82]0
*16”[5“ 3 ] -

i l—gw[g(n)m —2anPr -2+ %] = S (1VIT+1)

16. The sphere intersects the cylinder in the circle z> + y* = 1, z = /3, so S is the portion of the sphere where z > /3.
Using spherical coordinates to parametrize the sphere we have r(¢,0) = 2sin ¢ cos i+ 2sin¢ sinj + 2 cos ¢ k, and

|ty X rg| = 4sin ¢ (see Example 16.6.10). The portion where z > 1/3 corresponds to 0 < ¢ < 5.0<0<2mso
[sy*dS= jg"fow/ﬁ (2sin ¢ sin 0)*(4sin ¢) dp d = 16 f;ﬂ sin? 0 df jgr/b‘ sin® ¢ dop

= 1620~ §5in20]2" [ eos’ 6 — cos ] /" = 16(r) (L~ ~ 1 +1) = (2 ~6v8) =

17. Using spherical coordinates and Example 16.6.10 we have r(¢, §) = 2sin ¢ cos 01+ 2sin ¢sin j + 2 cos ¢ k and
Ity x vo| = 4sing. Then [ [, (232 + y*2) dS = [ [7/*(4sin® §)(2 cos ¢)(4sin ¢) dg d6 = 167 sin’ 6|7/ = 167
18. Here S consists of three surfaces: S1, the lateral surface of the cylinder; Sz, the front formed by the plane = + y = 5;
and the back, S3, in the plane z = 0.
On S;: the surface is given by r(u,v) = ui+ 3cosvj+ 3sinvk, 0 <v <2mand0 <z <5-y =
0<wu<5—3cosv. Thenr, X r, = —3cosvj—3sinvkand |r, X r,| = \/m: 3, s0
.ﬁfsl zzdS = fOZ" ;)5 —3cosv u(3sinv)(3) dudv =9 fOQ" [%uz} Z:gfacos Ysinvdv

= %foh (5—3cosv)’*sinvdv = £[1(5 —Z’)cosv)?‘}i’r =0.
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On So: r(y,2) = (5—y)i+yj+zkand|r, x r.| = [i+j| = V2, where y° + 22 < 9 and

[fs,zzdS= [[ (5 —y)zV2dA = ﬁf;ﬂf; (5 —rcos)(rsind)rdrdo

y? +22<9
= V2 [27 2 (512 — 1 cos ) (sin@) drdf = V2 [ [3r° — i cosd] zg sin 6 df
27
— VZ 7" (45 — Bl cos ) sin6.df = v/2 (&) - 1(45 — %cose)"‘]o =0
On S3: x =050 [ wzdS = 0. Hence [[;22dS=0+0+0=0.

19. S is given by r(u,v) = ui+cosvj+sinvk, 0 <u < 3,0 < v < w/2. Then
ry Xr, = ix (—sinvj+4cosvk) = —cosvj—sinvkand|r, x r,| = v/cos2v +sin?v = 1, so
/2

[fs(z+2%y)dS = 0"/2f03(sinv+u2cosv)(l)dudv: o (3sinv 4 9cosw) dv

=[-3cosv+ 9sinv|T/? =0+9+3—0=12

20. Let S be the lateral surface, S» the top disk, and S3 the bottom disk.

On S1:r(0,2) =3cosfi+3sinfj+2k,0<0<2m,0<2<2,|rg xr.| =3,

[fs, @ +y* +2°)dS = [J7 [7(9+2%) 3dzd6 = 2m(54 + 8) = 124

On S2:r(0,r) =rcosfi+rsinfj+2k,0<r<3,0<60<2m|rg xr,| =1,

ffs2(x2 TP 22 dS = [ZT 202 Ay rdrdo = 2m (B +18) = B,

On S3:r(0,7) =rcos@i+rsindj,0<r<3,0<0<2m|rg x| =7,

[fs, (@2 + % +22)dS = [ [S(r* + 0) rdrdf = 27(8) = S,

Hence [[, (2° +y° + 2°) dS = 1247 + 187 4 8L = 2417,

677

21, From Exercise 5, r(u,v) = (u+0v)i+ (u—0v)j+ (1+2u+v)k 0<u<2,0<v<1l,andr, xr, =3i+j— 2k

Then
F(r(u,v))=(142u+ v)e“”'“)(“_”) i—3(142u+ v)e("+”)("_”)j + (u+v)(u—v)k
2

=(14+2u+v)e" R 3(14+2u+ 11)6“2’”2j + (u? -0k

Because the z-component of r,, X r, is negative we use —(r, X r,) in Formula 9 for the upward orientation:

Jfs F-dS=[[, F-(~(ruxr,))dA= [ [ [73(1 +2u+0)e” ™ +3(1 4 2u+v)e”” ™ + 2w — v2)] du dv

= folf()Q 2(u* —v?) dudv = 2.]-01 [%us - UUQ}H:Z dv = 2.]3(% - 2U2) dv

u=0

=2[fv-3"=2(3-3) =1

22. r(u,v) = (ucosv,usinv,v),0 <u < 1,0 < v < 7and

ry X ry = (cosv,sinv,0) X (—usinv,ucosv,1) = (sinv, —cosv,u). Here F(r(u,v)) = vi+ usinvj+ ucosvk and,
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by Formula 9,
J[sF-dS= [[,F:(ryxr,)dA= fo Jo (vsinv — usinv cosv 4 u” cos v) dv du
= [i [sinv —veosv — Jusin® v + u? sino] | —5 du = fo mdu= mulp =7
23. F(z,y,2) = xyi+yzj+ 22k, 2 = g(x,y) =4 — 2 — 42, and D is the square [0, 1] x [0, 1], so by Equation 10
[ F-dS= [[ [—wy(—2z) —yz(—2y) + z2] dA = fol fol 222y + 22 (4 — 2® —y?) + 24 — 2 — )] dydx

_fo(12 Fo—a®+#)de =3}

U. F(z,y,2) = —zi—yj+ 2"k 2z = g(z,y) = /22 + ¢2, and D is the annular region {(z,y) | 1 < 2° + y* < 9}. Since S

has downward orientation, we have

el [ o )(ﬁ>
NI == a7 (Fr)raa

== [77d0 [P(? 4ty dr = — [0 [§7% + 7]}

1

dA

z? +y
x2+y

(T

243 1 1\ _ _ 1712
271'(9"" 5 3 5) =17

25. F(z,y,2) =zi—zj+yk, z = g(z,y) = \/4 — 22 — y? and D is the quarter disk

{(m7 y) | 0<z<2,0<y<+v4—2a? } S has downward orientation, so by Formula 10,
JIsE-ds =, [,x_ L —a? = y?) 2 (-20) — (—2)- H(d—a® ) VA(-2y) +y] A

4—x 7y 4—a2%2—y

— ffD 22 (4 — (2% + y)) VA = — fow/z fOQ(T cos0)2(4 — r?) "2 1 dr d

:_f‘"/2c0526'd(9 1‘027'3(4—7»2)71/2dr [letu:4_7,2 = T2:4—uand—%du:7‘d7.}
= _fofr/z (— + —00520) db f4 _5 —u)(u)*l/Q du

== [80+ 2] () [5VE— 3] = —5(4) (-16+ ) = ~r

26. F(z,y,2) =zzi+zj+yk
Using spherical coordinates, S is given by z = 5sin¢cos, y = 5sin¢sinf, z = 5cos ¢, 0 < 0 <,
0<¢<m F(r(¢,0)) = (5singpcosd)(5cosp)i+ (5sin¢cosb)j+ (5sinpsinf)k and

ry X ro = 25sin? ¢ cos i+ 25sin? ¢sin @ j + 25 cos ¢ sin d k, so

F(r(,0)) - (ry x rg) = 625sin® ¢ cos ¢ cos? O + 125 sin® ¢ cos O sin 6 + 125 sin? ¢ cos ¢ sin §
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Then
JIsF-dS = [[,[F(r(¢,0)) - (rs xre)]dA
= [ Jo(625sin® ¢ cos ¢ cos® 0 + 125 sin® ¢ cos 0 sin 6 + 125 sin” ¢ cos ¢ sin 0) do) do
=125 [ [5sin® ¢ cos ¢ (36 + % sin20) + sin® ¢ (4 sin® 0) + sin® ¢ cos ¢ (— cos )] Z:g do

=125 [ (47 sin® g cos ¢ + 2sin® g cos ) dp = 1252w - {sin* ¢+ 2 Fsin® ¢|] =0

27. Let S; be the paraboloid y = 22 + 22,0 < y < 1 and S» the disk 22 + 22 < 1,y = 1. Since S is a closed
surface, we use the outward orientation.

On Si: F(r(z,2)) = (#* + 2%)j— zkandr, x r, = 221 — j + 22 k (since the j-component must be negative on S;). Then

[[, F-dS= [[ [~(a*+2")—22°|dA == [[7 [ (r* + 2 sin® 0) rdr d6

22 +22<1
== Jo"Jo r*(1+ 2sin0) drdf = — [7 (141~ cos26) df Jy r* dr
— 20~ bsin20]}" (30 = ~tm-d =

On Sz: F(r(z,2)) =j— zkandr: x ry =j. Then [fg F-dS= [[ (1)dA=m.

22 422<1

Hence [[(F-dS = —m+7 =0.

28. F(z,y,2) = xyi+42®j+yzk, 2 = g(x,y) = xe¥, and D is the square [0, 1] x [0, 1], so by Equation 10
JIsF-dS= [[ [-zy(e¥) — 422 (ze¥) 4+ y2]dA = fol fol(—xycy — da8e¥ 4 zye?) dy dx

= fol [—4z3ey]zié dz = (e — 1) fol(—4x3)dz =1-e¢

29. Here S consists of the six faces of the cube as labeled in the figure. On Sy:
F=it+2yj+3zkr, xr.=iand [[; F-dS=[" [} dydz=4;
Sy F=wi+2j+3zkr. xr, =jand [[; F-dS=[1 [1 2dwdz=8;
Sy F=wi+2yj+3kr, xr, =kand [[; F-dS=[1 [1 3dudy=12
Syt F=—i+2yj+3zkr. xr,=—iand [[; F-dS=4;

Ss:F=zi-2j+32k r, xr. = —jand [f; F-dS=8;
Se: F =wi+2yj—3kr, xr, = —kand [[ F-dS=[! [! 3dudy=12.
6
Hence [[(F-dS =Y [[, F-dS =48,
i=1 N
30. Here S consists of three surfaces: S, the lateral surface of the cylinder; S, the front formed by the plane « + y = 2; and the

back, Ss, in the plane y = 0.

On S1: F(r(0,y)) =sinfi+yj+5bkandrg xry, =sinfi+cosfk =
stl F-ds= jé2ﬂj;]275in9(sin2 0 + 5cos ) dy do

= 02”(2sir1291L 10cos @ — sin® @ — 5sin @ cos ) df = 2r
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Comparing this equation with Equation 16, we see that
P(A) + K(A) = P(B) + K(B)
which saysthat if an object moves from one point A to another point B under the influence
of a conservative force field, then the sum of its potential energy and its kinetic energy

remains constant. This is called the Law of Conservation of Energy and it is the reason
the vector field is called conservative.

m Exercises

1. The figure shows a curve C and a contour map of a function f 9. F(x,y) = (Iny + 2xy®) i + (3x%y? + Xx/y)
whose gradient is continuous. Find [, Vf - dr.

10. F(x,y) = (xycoshxy + sinhxy)i + (x?cosh xy)j

y
\60
50\ 11. The figure shows the vector field F(x, y) = (2xy, x?) and
C 40 three curves that start at (1, 2) and end at (3, 2).
30 (a) Explainwhy [, F - dr has the same value for all three
20 curves.
10 (b) What is this common vaue?
\ ,
0 X o
3 T -
@A table of values of afunction f with continuous gradient is co-
given. Find j Vf - dr, where C has parametric equations -
x=t24+1 y=t3+t O0<t<1
1+
N Y 0 1 2
0 1 6 4
1 3 5 7 0 X
2 8 2 9

12-18 (@) Find afunction f such that F = Vf and (b) use

3-10 Determine whether or not F is a conservative vector field. part (8) to evaluate | F - dr along the given curve C.

If it is, find afunction f such that F = Vf. ( 12'] F(x,y) = x?i + y?j,
FOGY) = (2x — 3y)i + (=3x + 4y — 8)] Cisthe arc of the parabolay = 2x? from (—1, 2) to (2, 8)

4 F(x,y) = e*sinyi + e*cosy] F(xy) = xy?i + x%yj,
_ o Cir(t) = {t+sininmt t + cosinmt), O<t<1
F(x y) = e*cosyi + e*sinyj
14. F(x,y) = (1L + xy)e¥i + x%Y],

_ 2 o2y :
6. Fixy) = (%" = 2y%) i + (4xy + 3] C: r(t) = costi + 2sintj, 0<t< 7/2

<7; FOcy) = (ye™ + sny) i+ (& + xcosy) | 15. F(X,¥,2) = yzi + xzj + (xy + 22) k

8 F(xy)=2xy+y )i+ (x*—2xy®j, y>0 C istheline segment from (1, 0, —2) to (4, 6, 3)
Computer algebra system required 1. Homework Hints available at stewartcal culus.com
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16. F(x,y,2) = (y%z + 2x2%) i + 2xyzj + (xy? + 2x%2) K,
C:x=t,y=t+1 z=t> 0<t=<1

17. F(X,Yy,z) = yze¥i + e*j + xye*k,
Cr)=@t*+1i+t*—-1j+{t* -2k, 0st<2

18. F(X,y,z) =sinyi+ (xcosy + cosz)j — ysinzk,
C:r()=sinti+tj+2tk, 0st=<m/2

19-20 Show that the line integral is independent of path and eval-
uate the integral.

( 15. Jo2xeVdx + (2y — x%7) dy,

C is any path from (1, 0) to (2, 1)

Josinydx + (xcosy — siny) dy,

C is any path from (2, 0) to (1, )

21. Suppose you’re asked to determine the curve that requires the
least work for a force field F to move a particle from one
point to another point. You decide to check first whether F is
conservative, and indeed it turns out that it is. How would
you reply to the request?

Suppose an experiment determines that the amount of work
required for a force field F to move a particle from the point
(1, 2) to the point (5, —3) along a curve C; is 1.2 J and the
work done by F in moving the particle along another curve
C, between the same two points is 1.4 J. What can you say
about F? Why?

23-24 Find the work done by the force field F in moving an
object from P to Q.

Y F(xy) =2y + 3xy j; P(1,1), Q2,4
@F(x, y)=e’i—xe¥j; P(0,1), Q20

25-26 1s the vector field shown in the figure conservative?
Explain.

25, y 26. y
Ly e —— o p
lll//r«*ﬂ\ \»%/'//fTT
L O A N ~= - |7 t XX
NNV e s XN R B
S~ AR AR BN
~ == -7t XX L R B e Y
\sq/v//ff"i L\lf’/‘/*"*"\

cAs| 27 1f F(x,y) = sinyi + (1 + x cosy) j, use a plot to guess

whether F is conservative. Then determine whether your
guess is correct.

28. Let F = Vf, where f(x,y) = sin(x — 2y). Find curves C;
and C, that are not closed and satisfy the equation.

(a)jCF-dr=o (b)ch-dr=1
29. Show that if the vector field F = Pi + Q] + R k is conser-

vative and P, Q, R have continuous first-order partial deriva-
tives, then

P _0Q  _R  9Q_R

ay X az X 0z ay

30. Use Exercise 29 to show that the line integral
[y dx + xdy + xyz dz is not independent of path.

31-34 Determine whether or not the given set is (a) open,
(b) connected, and (c) simply-connected.

M {x,y) | 0<y<3} 32. {(x,y) | 1<|x| <2}
B Ay |1=sx2+y’<4,y=0}

3. {(x,y) | (x,y) = (2,3)}

—yi+ xj
35. Let F(x,y) = Xy
(a) Show that 9P/dy = 9Q/dx.
(b) Show that [ F - dr is not independent of path.
[Hint: Compute | F - drand [ F - dr, where C,
and C, are the upper and lower halves of the circle
x2 + y? =1 from (1, 0) to (—1, 0).] Does this contradict
Theorem 6?

36. (a) Suppose that F is an inverse square force field, that is,

cr

AT

for some constant ¢, where r = xi + yj + z k. Find the
work done by F in moving an object from a point P;
along a path to a point P, in terms of the distances d; and
d, from these points to the origin.

(b) An example of an inverse square field is the gravita-
tional field F = —(mMG)r/| r|* discussed in Example 4
in Section 16.1. Use part (a) to find the work done by
the gravitational field when the earth moves from
aphelion (at a maximum distance of 1.52 X 108 km
from the sun) to perihelion (at a minimum distance of
1.47 X 10° km). (Use the values m = 5.97 X 10* kg,
M = 1.99 X 10¥ kg, and G = 6.67 X 10 N-m¥kg?)

(c) Another example of an inverse square field is the electric
force field F = eqQr/| r |° discussed in Example 5 in
Section 16.1. Suppose that an electron with a charge of
—1.6 X 107* C is located at the origin. A positive unit
charge is positioned a distance 10~*2 m from the electron
and moves to a position half that distance from the elec-
tron. Use part (a) to find the work done by the electric
force field. (Use the value & = 8.985 X 10°.)
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49. Let r(t) = (x(t), y(t), 2(t)) and v = (v1, 2, vs). Then
Jov-dr = [" (i, va,vs) - (&' (1), 5/ (1), 2/ () dt = [ [or 2’ (t) + v2 /' (t) + vs 2/ (t)] dt
= [v12(t) +v2y(t) + vs z(t)}i = [v1 2(b) + v2 y(b) + v3 2(b)] — [v1 (a) + v2 y(a) + vs z(a)]
=1 [2(b) — 2(a)] +v2 [y(b) — y(a)] + vs [2(b) — 2(a)]
= (v1,v2,v3) - {x(b) — 2(a), y(b) — y(a), 2(b) — z(a))
= (v1,v2,v3) - [(@(b), y(b), 2(b)) — (z(a), y(a), 2(a))] = v - [x(b) — x(a)]
50. If r(t) = (a(t), y(t), 2(t)) then
Jor-dr = [2 (), y(t), 2(t) - (@' (8), 5/ (1), 2/ () dt = [ [e(t) 2" (£) +y(t) ¥/ (t) + =(£) 2/ (1)] dt
[2l2(0) + 3O + 3=,
3 {(l=@F + O + [2(001?) — (le(a)]* + [y(a)]* + [2(a)]*) }
=3 [lx®)1” = [r(@)’]

51. The work done in moving the object is |, cF-dr= /. ¢ F - T ds. We can approximate this integral by dividing C' into
7 segments of equal length As = 2 and approximating F - T, that is, the tangential component of force, at a point (x;,y; ) on
each segment. Since C' is composed of straight line segments, F' - T is the scalar projection of each force vector onto C'.

If we choose (z7,y;) to be the point on the segment closest to the origin, then the work done is

7
JoF-Tds=~ Y [F(z7,y]) T(xf,y;)] As = [24+ 242424 1 4 1 + 1](2) = 22. Thus, we estimate the work done to

i=1

be approximately 22 J.

52. Use the orientation pictured in the figure. Then since B is tangent to any circle that lies in the plane perpendicular to the wire,
B = |B| T where T is the unit tangent to the circle C: = rcos, y = rsinf. Thus B = |B| (—sin 0, cos #). Then
[oB-dr = [ |B|(~sin0,cos) - (—rsind,rcosd)dd = [" |B|rdf = 2n7 |B|. (Note that |B] here is the magnitude

of the field at a distance r from the wire’s center.) But by Ampere’s Law [, B - dr = p,I. Hence [B| = poI/(277).

16.3 The Fundamental Theorem for Line Integrals

1. C appears to be a smooth curve, and since V f is continuous, we know f is differentiable. Then Theorem 2 says that the value
of [, o Vf - dris simply the difference of the values of f at the terminal and initial points of C'. From the graph, this is
50 — 10 = 40.

2. C'is represented by the vector function r(t) = (t* + 1) i+ (t3 +1)j,0 <t < 1,50 v/(t) = 2ti + (3t> 4 1) j. Since
3t2 + 1 # 0, we have r'(t) # 0, thus C' is a smooth curve. V f is continuous, and hence f is differentiable, so by Theorem 2

we have [, V[ -dr = f(r(1)) — f(r(0)) = f(2,2) — f(1,0) =9 -3 =6.

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



638

10.

1.

U CHAPTER16 VECTOR CALCULUS

. 0(2x — 3y) /0y = —3 = O(—3x + 4y — 8)/Ox and the domain of F is R? which is open and simply-connected, so by

Theorem 6 F is conservative. Thus, there exists a function f such that Vf = F, that is, fo(z,y) = 22 — 3y and
fy(@,y) = =3z + 4y — 8. But f..(x,y) = 2= — 3y implies f(z,y) = > — 32y + g(y) and differentiating both sides of this
equation with respect to y gives fy(z,y) = —3x + ¢'(y). Thus =3z + 4y — 8 = =3z + ¢'(y) so ¢'(y) = 4y — 8 and

g(y) = 2y* — 8y + K where K is a constant. Hence f(z,y) = 2% — 3zy + 2y — 8y + K is a potential function for F.

. 9(e” siny) /9y = e” cosy = d(e” cosy)/z and the domain of F' is R?. Hence F is conservative so there exists a function f

such that Vf = F. Then f.(x,y) = €* siny implies f(z,y) = e* siny + g(y) and fy(x,y) = e cosy + g’ (y). But

fy(z,y) =e"cosysog'(y) =0 = g¢g(y) = K. Then f(z,y) = e” siny + K is a potential function for F.

. 0(e” cosy) /0y = —e” siny, d(e” siny)/Ox = e” siny. Since these are not equal, F is not conservative.
. (322 — 2y?) /0y = —4y, O(4zy + 3)/Ox = 4y. Since these are not equal, F is not conservative.

. O(ye® +siny) /0y = e® + cosy = d(e” + x cosy)/dx and the domain of F is R?. Hence F is conservative so there

exists a function f such that Vf = F. Then f,(x,y) = ye® + siny implies f(z,y) = ye* + x siny + g(y) and
fylx,y) = e” +xcosy + g'(y). But fy(z,y) = e* + xcosyso g(y) = K and f(z,y) = ye* + xsiny + K is a potential

function for F'.

. 0(2xy +y~2) /0y = 2z — 2y~ = d(a® — 2xy~?)/0x and the domain of F is {(z,y) | y > 0} which is open and

simply-connected. Hence F is conservative, so there exists a function f such that Vf = F. Then f,(z,y) = 2zy + y >

implies f(x,y) = 2°y + 2y~ > + g(y) and f, (2,y) = 2® — 2zy~° + ¢'(y). But f,(z,y) = 2* — 22y~ s0

g (y)=0 = g(y)= K. Then f(z,y) = z*y + 2y~ 2 + K is a potential function for F'.

. I(Iny + 2xy°) /0y = 1/y + 62y* = 9(32*y* + x/y)/Ox and the domain of F is {(x,y) | y > 0} which is open and simply

connected. Hence F is conservative so there exists a function f such that V f = F. Then f.(z,y) = Iny + 22y implies
fa,y) = xlny +a?y® + g(y) and f,(z,y) = x/y + 32y + ¢'(y). But fy(w,y) = 32°y* +z/ysog'(y) =0 =

g(y) = K and f(x,y) = zlny + 2°y* + K is a potential function for F.

O(zy cosh zy + sinh zy)
9y

A(x? cosh zy)

= 22y sinh zy + & cosh zy + x cosh zy = 2%y sinh zy + 2z coshzy = 3
-

and the domain of F is R?. Thus F is conservative, so there exists a function f such that Vf = F. Then
fz(x,y) = zy coshzy + sinh zy implies f(x,y) = zsinhzy + g(y) = fy(z,y) = 2* coshzy + ¢’ (y). But

fy(x,y) = 2 coshzy so g(y) = K and f(x,y) = zsinhzy + K is a potential function for F.

(a) F has continuous first-order partial derivatives and 82 2zy = 2z = 82 (x?) on R?, which is open and simply-connected.
y x

Thus, F is conservative by Theorem 6. Then we know that the line integral of F' is independent of path; in particular, the
value of |, o F - dr depends only on the endpoints of C'. Since all three curves have the same initial and terminal points,

Jo F - dr will have the same value for each curve.
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(b) We first find a potential function f, so that Vf = F. We know f.(x,y) = 2zy and f,(z,y) = 2°. Integrating
fu(, y) with respect to 2, we have f(z,y) = x*y + g(y). Differentiating both sides with respect to y gives
fo(z,y) = 2% 4 ¢'(y), so we must have 2% + ¢'(y) = 2> = ¢'(y) =0 = g(y) = K, a constant.
Thus f(z,y) = 2*y + K. All three curves start at (1, 2) and end at (3,2), so by Theorem 2,

Jo F-dr = f(3,2) — f(1,2) = 18 — 2 = 16 for each curve.

. (@) fo(x,y) = 2® implies f(z,y) = 32° + g(y) and fy(z,y) = 0+ ¢'(y). But fy(z,y) =y so

g =v" = g(y)=32y>+ K. Wecantake K = 0,s0 f(z,y) = 32° + 1¢°.

() [ F-dr=f(2,8)—f(-1,2)= (8 +22) — (-3 + &) =171

- (@) fo(z,y) = zy® implies f(z,y) = $2%y® + g(y) and fy(2,y) = 2%y + ¢'(y). But fy(z,y) = 2°ysog'(y) =0 =

g(y) = K, a constant. We can take K = 0, so f(z,y) = %x2y2.

(b) The initial point of C'is r(0) = (0, 1) and the terminal point is r(1) = (2,1), so

JoF-dr=f(2,1)~ f(0,1)=2-0=2.

- @) fy(z,y) = 2™ implies f(z,y) = ze™ +g(x) = fa(z,y) = zye™ +e™ +g'(z) = (1L +ay)e™ + ¢ (x). But

fo(z,y) = (1+zy)e™¥sog' (z) =0 = g(z) =K. Wecantake K = 0,s0 f(z,y) = ze.
(b) The initial point of C'is r(0) = (1, 0) and the terminal point is r(7/2) = (0, 2), so

JoF-dr=£(0,2) = f(1,0)=0—¢" = —1.

9y(y,2) =0 = g(y,2) = h(2). Thus f(z,y,2) = xyz + h(z) and f:(z,y, 2) = xy + I'(2). But
fo(w,y,2) =2y + 22,50 ' (2) =22 = h(z) = 2> + K. Hence f(z,y,2) = zyz + 2 (taking K = 0).

®) [ F-dr = f(4,6,3) — f(1,0,—2) =81 — 4 = T7.

. (@) folz,y,2) = y*2 + 222% implies f(z,y,2) = zy’z +222% + g(y, z) and so fy(z,v, z) = 2xyz + g, (y, 2). But

fo(@,y,2) =2xyzs0g,(y,2) =0 = g(y,2) = h(2). Thus f(z,y, 2) = 2y°2 + x22* 4+ h(z) and
foz,y, 2) = xy® + 22%2 + B/ (2). But f.(x,y,2) = xy® + 22°2,50 K'(2) =0 = h(z) = K. Hence
f(z,y,2) = zy*z + 2222 (taking K = 0).

(b) t = 0 corresponds to the point (0,1, 0) and ¢ = 1 corresponds to (1,2, 1), so
Jo Fodr=f(1,2,1) = £(0,1,0) =5 —0=5.

- @) fa(z,y,2) = yze” implies f(z,y,2) = ye* + g(y, z) and so fy(z,y,2) = €™ + gy(y, 2). But fy(z,y,2) =" s0

9y(y,2) =0 = g(y,2) = h(2). Thus f(x,y,2) = ye* + h(z) and f.(x,y,z) = xye™ + h'(z). But
fa(z,y,2) = aye®,s0h'(2) =0 = h(z) = K. Hence f(z,y,z) = ye** (taking K = 0).

(b) r(0) = (1,-1,0),r(2) = (5,3,0) so [, F-dr = f(5,3,0) — f(1,—1,0) = 3¢” + ¢’ = 4.
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(@) fo(z,y,2) = siny implies f(z,y,2) = xsiny + g(y, z) and so fy(z,y,2) = zcosy + gy(y, z). But

fy(@,y,2) = xcosy + coszs0 gy(y,z) =cosz = g¢(y,z) = ycosz+ h(z). Thus

f(x,y,2) = zsiny + ycosz + h(z) and f.(z,y,2) = —ysinz + ' (2). But f.(z,y,2) = —ysinz,soh'(z) =0 =

h(z) = K. Hence f(z,y,z) = zsiny + y cos z (taking K = 0).

(b) r(0) = (0,0,0), r(r/2) = (1,7/2,7) so fc F.-dr=f(1,7/2,7) - f(0,0,0)=1-35 -0=1-7%.
The functions 2ze Y and 2y — z?e Y have continuous first-order derivatives on R? and

g (2we™¥) = —2ze ¥ = g (2y —a”e7¥),s0 F(x,y) = 2ze Y i+ (2y — e ) j is a conservative vector field by
Yy z

Theorem 6 and hence the line integral is independent of path. Thus a potential function f exists, and f(z,y) = 2ze ™Y
implies f(z,y) = a®e™" + g(y) and f, (z,y) = —z®¢™" + ¢'(y). But fy(z,y) = 2y — 2°¢ ¥ s0
g () =2y = g(y) =vy*+ K. Wecantake K = 0, s0 f(z,y) = 2”¢™¥ + y*. Then

Jo 2ze™V dx 4 (2y — e V) dy = f(2,1) — f(1,0) =de P + 1 —1=4/e.
The functions sin y and x cosy — sin y have continuous first-order derivatives on R? and

7] 7] . .
— (siny) = cosy = e (z cosy — siny), so F(x,y) = sinyi+ (z cosy — siny) j is a conservative vector field by
x

Jy

Theorem 6 and hence the line integral is independent of path. Thus a potential function f exists, and f.(z,y) = siny implies

f(z,y) = wsiny + g(y) and fy(z,y) = zcosy + g'(y). But fy(z,y) = wcosy —siny so

g (y) = —siny = g(y) = cosy + K. We can take K = 0, so f(z,y) = xsiny + cosy. Then
Jo sinyde 4 (zcosy —siny)dy = f(1,7) — f(2,0) = =1 -1 = -2,

If F is conservative, then [, ¢ F - dr is independent of path. This means that the work done along all piecewise-smooth curves
that have the described initial and terminal points is the same. Your reply: It doesn’t matter which curve is chosen.

The curves C1 and C> connect the same two points but jCl F.dr# [ O F - dr. Thus F is not independent of path, and

therefore is not conservative.

F(z,y) = 2y*/%i+ 32 \/yj, W = [ F - dr. Since d(2y*/?) /0y = 3 \/§ = 9(3z \/y )/, there exists a function f
such that Vf = F. In fact, f.(z,y) = 20°/% = f(x,y) =22*? +9(y) = f,(z,y) = 32y"% + ¢ (y). But
fy(z,y) =3z /ysog(y) =0org(y) = K. Wecantake K =0 = f(z,y) = 2243/, Thus

W= [,F-dr=f(2,4)— f(1,1) = 2(2)(8) — 2(1) = 30.

F(z,y) =eVi—xze ¥j, W = [, F-dr. Since diy () =-ev= %(—ze’y), there exists a function f such that
Vf=F.Infact, fo =e ¥ = f(z,y)=xe ¥ +gy) = fy,=-ze?V+4(y) = ¢'(y)=0,s0we can take

J(z,y) = we™¥ as a potential function for F. Thus W = [, F -dr = f(2,0) — f(0,1) =2 -0 =2.
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Another method for solving the system of equa-
tions (2-5) is to solve each of Equations 2, 3,
and 4 for A and then to equate the resulting
expressions.

SECTION 14.8 LAGRANGE MULTIPLIERS 959

For functions of two variables the method of Lagrange multipliers is similar to the
method just described. To find the extreme values of f(x,y) subject to the constraint
g(x,y) = k, welook for values of x, y, and A such that

Vi y) =AVg(xy) and  g(xy) =k
This amounts to solving three equations in three unknowns:
fe = Agx fy = Agy g(xy) =k

Our first illustration of Lagrange’s method is to reconsider the problem given in Exam-
ple 6 in Section 14.7.
1 IETETER A rectangular box without alid isto be made from 12 m? of cardboard.
Find the maximum volume of such a box.

SOLUTION Asin Example 6 in Section 14.7, we let X, y, and z be the length, width, and
height, respectively, of the box in meters. Then we wish to maximize

V = xyz
subject to the constraint
g(X,y,z) = 2%z + 2yz + xy = 12

Using the method of Lagrange multipliers, we look for values of x, y, z, and A such that
VV = AVgandg(x, Yy, z) = 12. This gives the equations

Vx = Agx

Vy = Agy

V. = Ag:

2xz + 2yz + xy = 12
which become

2] yz = A2z +Y)
[3] Xz = M2z + )
@ Xy = A(2X + 2y)
[5] 2xz + 2yz + xy = 12

There are no genera rules for solving systems of equations. Sometimes some ingenuity is
required. In the present example you might notice that if we multiply (2] by x, [3] by y,
and [4] by z, then the left sides of these equations will be identical. Doing this, we have

(6] Xyz = A(2xz + xy)
Xyz = AM2yz + xy)
Xyz = A(2xz + 2yz)

We observe that A # 0 because A = 0 would imply yz = xz = xy = 0 from [2], [3],
and [4] and this would contradict [5]. Therefore, from [6] and [7], we have

2Xz + Xy = 2yz + Xy
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In geometric terms, Example 2 asks for
the highest and lowest points on the curve
C in Figure 2 that lie on the paraboloid
z = x? 4+ 2y?and directly above the con-
straint circle x? + y? = 1.

FIGURE 2

The geometry behind the use of Lagrange

multipliers in Example 2 is shown in Figure 3.
The extreme values of f(x,y) = x? + 2y?
correspond to the level curves that touch the

circle x? + y? = 1.

x2+2yr=2

FIGURE 3

=
%

x1+2y*=1

which gives xz = yz. But z # 0 (since z = 0 would give V = 0), so x = y. From
and [8] we have
2yz + Xy = 2xz + 2yz

which gives 2xz = xy and so (since x # 0) y = 2z. If we now put x =y = 2z in [5],
we get
47% + 42% + 472 =12

Since X, y, and z are all positive, we therefore have z = 1 and so x = 2 and y = 2. This
agrees with our answer in Section 14.7. |

V1 IET0TEITF] Find the extreme values of the function f(x, y) = x* + 2y?on the
circle x? + y2 = 1.

SOLUTION We are asked for the extreme values of f subject to the constraint
g(x,y) = x? + y? = 1. Using Lagrange multipliers, we solve the equations Vf = A Vg
and g(x, y) = 1, which can be written as

fx = Agy fy = Agy gix,y) =1
or as
[9] 2X = 2XA
4y =2yA

[11] X2 +y2=1

From [9] we have x = 0 or A = 1. If x = 0, then [11] givesy = =1. If A = 1, then
y = 0 from [10], so then gives x = =1. Therefore f has possible extreme values
at the points (0, 1), (0, —1), (1, 0), and (—1, 0). Evaluating f at these four points, we
find that

f(0,1) =2 f(0, —1) = 2 f(1,0) =1 f(-1,0) =1

Therefore the maximum value of f on the circle x*> + y2 = 1is f(0, +1) = 2 and the
minimum value is f(=1, 0) = 1. Checking with Figure 2, we see that these values look
reasonable. e

Z72YTITFE] Find the extreme values of f(x,y) = x? + 2y?on the disk x? + y? < 1.

SOLUTION According to the procedure in (14.7.9), we compare the values of f at the criti-
cal points with values at the points on the boundary. Since f, = 2x and f, = 4y, the only

critical point is (0, 0). We compare the value of f at that point with the extreme values on
the boundary from Example 2:

£(0,0) =0 f(+1,0)=1 f(0, +1) = 2

Therefore the maximum value of f on the disk x? + y?> < 1is (0, =1) = 2 and the
minimum value is f(0, 0) = 0. ||

[E7XTEITE Find the points on the sphere x? + y? 4+ z? = 4 that are closest to and
farthest from the point (3, 1, —1).

SOLUTION The distance from a point (x, y, z) to the point (3, 1, —1) is

d=Vx =32+ (y— 12+ (z + 1)?
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Figure 4 shows the sphere and the nearest point
P in Example 4. Can you see how to find the
coordinates of P without using calculus?

(3,1,—-1)

FIGURE 4

h=c Vg

FIGURE 5

SECTION 14.8 LAGRANGE MULTIPLIERS 961

but the algebra is simpler if we instead maximize and minimize the square of the
distance:

d?=fx,y,2)=(x—3%*+ (y— 1?2+ (z + 1)?
The constraint is that the point (x, y, z) lies on the sphere, that is,
gy, ) =x* +y* + 22 =4

According to the method of Lagrange multipliers, we solve Vf = A Vg, g = 4. This gives

[12] 2(x — 3) = 2xA
[13] 2(y — 1) = 2yA
20z + 1) = 221
[15] X2+ y2+z2=4

The simplest way to solve these equations is to solve for X, y, and z in terms of A from
[12], [13], and [14], and then substitute these values into [15]. From [12] we have

X —3=xA or X(1—-1A)=3 or X =

[Note that 1 — A # 0 because A = 1 is impossible from [12].] Similarly, [13] and [14] give

1 _ 1
YT T
Therefore, from [15], we have
2 12 _1 2
8 + + O _ 4

-0 Q-1 @@=
which gives (1 — A2 =%,1 — A = =/11/2, s0

V11
2

A=1=*

These values of A then give the corresponding points (X, Y, z):

6 2 2\ . (.6 2 2
It’s easy to see that f has a smaller value at the first of these points, so the closest point

is (6/v/11, 2/y/11, —2/+/11) and the farthest is (—6/y/11, —2/+/11, 2/y/11). -

I Two Constraints

Suppose now that we want to find the maximum and minimum values of a function f(x, y, z)
subject to two constraints (side conditions) of the form g(x, y, z) = k and h(x, y, z) = c.
Geometrically, this means that we are looking for the extreme values of f when (x, Y, z) is
restricted to lie on the curve of intersection C of the level surfaces g(x, y, z) = k and
h(x, y, z) = c. (See Figure 5.) Suppose f has such an extreme value at a point P(Xo, Yo, zo)-
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5. lim (5 — x%?) 6. lim e™cos(x +vy)
(% y)—(1,2) (X y)—(1,-1)

7

SECTION 14.2 LIMITS AND CONTINUITY 899

is arationa function of three variables and so is continuous at every point in R* except
where x? + y? + z2 = 1. In other words, it is discontinuous on the sphere with center the
origin and radius 1.

If we use the vector notation introduced at the end of Section 14.1, then we can write the
definitions of a limit for functions of two or three variables in a single compact form as
follows.

E] If f is defined on asubset D of R", then limy_., f(x) = L means that for
every number ¢ > 0 there is a corresponding number § > 0 such that

if xeD and 0<|x—a|<§ then |[f(x)—L|<e

Notice that if n = 1, then x = x and a = a, and |5] is just the definition of a limit for
functions of a single variable. For the case n = 2, we have x = (x,y), a= (a, b),
and [x —a|=+/(x—a2+ (y—b?, 0 becomes Definition 1. If n = 3, then
X = (X VY,z),a= (a,b,c),and 5] becomesthe definition of alimit of afunction of three
variables. In each case the definition of continuity can be written as

lim £() = f(a)

m Exercises

1. Suppose that limy) 3,1 (X, y) = 6. What can you say . y2 sin’x . Xy —y
about the value of f(3, 1)?What if f is continuous? "- Mo X+ y? LB L Py vyl
2. Explain why each function is continuous or discontinuous. ) Xy ) Xt —y*
(&) The outdoor temperature as a function of longitude, 13. |)”T(1 T 1. lim ——= 114
X N %, y)— (0, / + %, y)— (0, +
latitude, and time peO XTIy oo X y -
(b) Elevation (height above sea level) as a function of ) x?yeY ) x2dn?y
longitude, latitude, and time 15. (x‘yl)ll:?o‘ o x4 + 4y? 16. lx,yli!»]?o,oh X2 + 2y?
(c) The cost of ataxi ride as a function of distance traveled 2\ .
and time 17, lim — Y qe i Xy
(V0.0 VX2 + y2+1-1 960 X + y®
3-4 Use atable of numerical values of f(x,y) for (x, y) near the ) i
origin to make a conjecture about the value of the limit of f(x, y) L , )L'[l;' 013 e’ tan(xz)
as (x,y) — (0, 0). Then explain why your guess is correct.
x2v3 + x3y2 — 5 2% 20. im o Xytyz
3 f(xy) = Xy Xy o 4 f(xy) = ziyz (xy.9-000 X2+ y? + 72
2 — Xy X°+ 2y ) )
Xy + yz© + Xz
21. M v a
(xy,2)—000 X+ Yy + z
5-22 Find the limit, if it exists, or show that the limit does ) yz
not exist. 2 (x, ya!@o, 0.0 X2 + 4y? + 972

4-xy 142 {4 23-24 Use a computer graph of the function to explain why the

7. lim —— = 8 i I\ 0—— limit does not exist.

xy—@1 X+ 3y (xy)—(1,0) X+ Xy

2x% + 3xy + 4y? ) xy?
: x* — 4y? ) 5y*cos’x 23 e Y > y 2. lim —0— y -

9. lim ——= 10. i —_ (x,)—(0,0) 3x° + by (xy—0,0 X* + Y

xy—00 X2+ 2y? xy—00 Xx*+y
E Graphing calculator or computer required 1. Homework Hints available at stewartcal culus.com
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4. We make a table of values of

N | -03 |02 |01 | 0 01 | 02 |03
oy) = =22 g £
fla,y) = 22 1 242 orasetof (z,y) —03 | 0.667| 0.706| 0.545] 0.000 |—0.545 |—0.706 | ~0.667
points near the origin. —02 ]| 0545| 0667 0.667 | 0.000 |—0.667 |—0.667 | ~0.545
—0.1 | 0316] 0444 | 0.667 | 0.000 |—0.667 |—0.444 | 0316
0 | 0000| 0.000| 0.000 0.000 | 0.000 | 0.000

0.1 | —0.316 | —0.444 | —0.667 | 0.000 0.667 | 0.444 | 0.316

0.2 | —0.545] —0.667 | —0.667 | 0.000 0.667 | 0.667 | 0.545

0.3 | —0.667 | —0.706 | —0.545 | 0.000 0.545 | 0.706 | 0.667

It appears from the table that the values of f(x,y) are not approaching a single value as (x, y) approaches the origin. For
verification, if we first approach (0, 0) along the z-axis, we have f(z,0) = 0, so f(z,y) — 0. But if we approach (0, 0) along

222

the liney =z, f(z,z) = e

2 . . .
=3 (z #0),s0 f(z,y) — % Since f approaches different values along different paths

to the origin, this limit does not exist.

5. f(x,y) = 52° — 2%y is a polynomial, and hence continuous, so( %nn( )f(:z:, y) = f(1,2) =5(1)% — (1)*(2)% = 1.
x,y)—(1,2

6. —zy is a polynomial and therefore continuous. Since e’ is a continuous function, the composition e ~*¥ is also continuous.
Similarly, = + y is a polynomial and cos ¢ is a continuous function, so the composition cos(z + y) is continuous.
The product of continuous functions is continuous, so f(z,y) = e~ cos(x + y) is a continuous function and

( )lir?l 1)f(amy) = f(1,-1) = e~ D cos(1 4 (=1)) = e' cosO =e.
z,y)— L, —

7. f(z,y) = A-azy is a rational function and hence continuous on its domain.
2 + 3y
(2,1) is in the domain of f, so f is continuous there and ~ lim  f(z,y) = f(2,1) -0 2
5 1 xr,Y)= ) = 75N 1 a/1\2  =°
’ @z Y @2+3(1)2 7
1+ y2 . . . . . . S . . .
8. P is a rational function and hence continuous on its domain, which includes (1, 0). Int is a continuous function for
2 4+ zy
.. T+9% . . 1442 . . .
t > 0, so the composition f(z,y) = In | ——— | is continuous wherever ———— > 0. In particular, f is continuous at
x? +xy 2 +xy
(10)andso  Tim  flay) = f(1,0)=tn (=% ) i g
’ e PR R A G SR A B

9. f(z,y) = («* — 4y®)/(z* +2y*). First approach (0, 0) along the z-axis. Then f(z,0) = z*/2* = 2 for x # 0, so
f(z,y) — 0. Now approach (0, 0) along the y-axis. For y # 0, f(0,y) = —4y?/2y* = —2, so f(z,y) — —2. Since f has

two different limits along two different lines, the limit does not exist.
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. f(x,y) = (5y* cos® z)/(z* +y*). First approach (0,0) along the z-axis. Then f(z,0) = 0/z* = 0 for = # 0, so

f(z,y) — 0. Next approach (0, 0) along the y-axis. For y # 0, f(0,y) = 5y*/y* = 5, s0 f(z,y) — 5. Since f has two

different limits along two different lines, the limit does not exist.

f(z,y) = (y*sin® ) /(z* +y*). On the z-axis, f(z,0) = 0 forz # 0, so f(z,y) — 0as (z,y) — (0,0) along the

22 2 .
z-axis. Approaching (0, 0) along the line y = z, f(z,z) = rsine sz 1 (smx

2
) for z # 0 and

x4ttt 2?2 2
1in% e _ 1,80 f(z,y) — % Since f has two different limits along two different lines, the limit does not exist.
xr—
. flzy) = % On the z-axis, f(x,0) = 0/(z — 1)? = 0 for x # 1, s0 f(z,y) — 0as (z,y) — (1,0) along
z— Y

0 —_ —_ (7 — — 2
the z-axis. Approaching (1,0) along the liney =z — 1, f(z,z — 1) = (xz(w_ 1)12)+ ((;_ 11))2 = 2((2 _11))2 = % forx # 1,

so f(z,y) — % along this line. Thus the limit does not exist.

- flzy) = —2Y  We can see that the limit along any line through (0, 0) is 0, as well as along other paths through

(0,0) such as = = y* and y = 2. So we suspect that the limit exists and equals 0; we use the Squeeze Theorem to prove our

Yy

assertion. 0 <

< |z] since |y| < /2% + y2, and |z| — O as (z,y) — (0,0). So ( l)in%0 O)f(x,y) =0.
z,y)— (0,

oyt @4y -y

. fzy) = o o =22 — y? for (,y) # (0,0). Thus the limit as (z,y) — (0,0) is 0.
z2yeY
. Let f(z,y) = ek Then f(z,0) = 0 for x # 0, so f(z,y) — 0as (z,y) — (0,0) along the z-axis. Approaching
4y
222 e zher®
(0, 0) along the y-axis or the line y = z also gives a limit of 0. But f(a:, :c2) =—————=—-—=—forx #0,s0

xt 4 4(x?)? 54 5

f(z,y) — €”/5 =L as (x,y) — (0,0) along the parabola y = x*. Thus the limit doesn’t exist.

2 2
. We can use the Squeeze Theorem to show that  lim Loy o
(2,y)—(0,0) &2 + 212
2 1.2 2 2 -2
z7sin”y Lo T .2 . z”sin”y
- 7 <L since ———— < 1, and 0as 0,0), so I —— =0.
Sy S sin”y PRI sin”y — (z,y) — (0,0) (I,y)lgl(o’o) 22 1 242

2> +y° 2° + 7 VP14

. lim ———Z——— = lim
@n)=0.0 /22 +y2+1 -1 (@9=00) /22 +9y2+1-1 /22 +y2+1+1

~  lim () (VT L) im (VETEEI41) =2

(2,9)—(0,0) 2 +y? (2,5)—(0,0)
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1. Line Integrals Of Vector Fields - Practice Problems Solutions

1. Evaluate /ﬁ . d7 where F (z,y) = 42 i + (3¢ — 6y) j and C is the line segment from (3, 7) to (0, 12).
c

,

Here is a quick sketch of C' with the direction specified in the problem statement shown.

— ks

(=

Next, we need to parameterize the curve.




F(t)=(1—1t)(3,7)+(0,12) = (3—3t,7+5t) 0<t<1

In order to evaluate this line integral we’ll need the dot product of the vector field (evaluated at the along the curve) and the derivative of the
parameterization.

Here is the vector field evaluated along the curve (i.e. plug in  and y from the parameterization into the vector field).
FF () =(T+5t)7+(3(3—3t)—6(7T+5t))j=(7T+5t)°% + (—33—39¢)
The derivative of the parameterization is,
7 (t) = (-3,5)
Finally, the dot product of the vector field and the derivative of the parameterization.

F (7 (t)) .7 (t) = —3(7 + 5t)* — 5 (33 + 39¢t)
Now all we need to do is evaluate the integral.

/ﬁ.d?

C

1
/ —3(7 + 5t)* — 5 (33 + 39¢t) dt
0

195 ,

1 ! 1079
[—3(7+ 5t)% — 165t — —t } =|-—"

0




2 : Line Integrals Of Vector Fields - Practice Problems Solutions

2 2
- = 2 - z ;
2. Evaluate /F . dr where F (z,y) = (£ +y) ¢ + (1 — z) j and C'is the portion of vy + ¥ —1 thatisin the 4t quadrant with the

9
c
counter clockwise rotation.

7

Here is a quick sketch of C' with the direction specified in the problem statement shown.

v

Next, we need to parameterize the curve.




r(t) = (Zeos(t),$sm(t))  GWSE<w

In order to evaluate this line integral we’ll need the dot product of the vector field (evaluated at the along the curve) and the derivative of the
parameterization.

Here is the vector field evaluated along the curve (i.e. plug in  and y from the parameterization into the vector field).
F (7 (t)) = (2cos(t) + 3sin(t)) i + (1 — 2cos(t)) j
The derivative of the parameterization is,

7 (1) = (~2sin(0), 3oos(t)

Finally, the dot product of the vector field and the derivative of the parameterization.

F (7 (t)) - 7' (t) = (2 cos(t) + 3sin(t)) (—2sin(t)) + (1 — 2 cos(t)) (3 cos(t))
—4 cos(t) sin(t) — 6sin® (t) + 3 cos(t) — 6cos” (t)
—4 cos(t) sin(t) — 6 [sin® () + cos® ()] + 3 cos(t)

= —2sin(2t) + 3cos(t) — 6

Make sure that you simplify the dot product with an eye towards doing the integral! In this case that meant using the double angle formula for
sine to “simplify” the first term for the integral.

Now all we need to do is evaluate the integral.

3
271'

27
/F JdF = / —25in(2¢) + 3cos(t) — 6 dt
J s

_ . _ 2n _ —
= [cos(2t) + 3sin(t) 61,‘]|%7r




3 Line Integrals Of Vector Fields - Practice Problems Solutions

3. Evaluate /ﬁ . 7' where F (z,y) = y? i+ (z* —4) 7 and Cis the portion of y = (z—1)fromz =0tox = 3.
c

,

Here is a quick sketch of C' with the direction specified in the problem statement shown.

v

(=

Next, we need to parameterize the curve.

=1

(t):<t,(t71)2> 0<t<3




In order to evaluate this line integral we’ll need the dot product of the vector field (evaluated at the along the curve) and the derivative of the

parameterization.

Here is the vector field evaluated along the curve (i.e. plug in  and y from the parameterization into the vector field).

—

The derivative of the parameterization is,

7 (t) = (1,2(t — 1))

Finally, the dot product of the vector field and the derivative of the parameterization.

F(7(t) = [(t71)2]2§+ ((t)274)3: -1+ (2-4);

F(7(6).7 () = (t—1"Q)+ (£ —4) (2t - 2)

—(t—1)"+2t> -2 — 8t +8

Make sure that you simplify the dot product with an eye towards doing the integral!

Now all we need to do is evaluate the integral.
R 3
/F.dF:/ (t—1)" + 26> — 2t — 8t + 84t
0
c

_ 1 5 1 4 2 3 2
= [g(t—l) + ot — gt -4t 48t

10

171
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Line Integrals - Part | - Practice Problems Solutions

1. Evaluate /3x2 — 2y ds where C'is the line segment from (3, 6) to (1, —1).
c

4 3\

Here is a quick sketch of C' with the direction specified in the problem statement shown.

v

(3,6)

(=]

(1-1)

Now, with the specified direction we can see that x is decreasing as we move along the curve in the specified direction. This means that we

can't just determine the equation of the line and use that to work the problem. Using the equation of the line would require us to use increasing
z since the limits in the integral must go from smaller to larger value.




We could of course use the fact from the notes that relates the line integral with a specified direction and the line integral with the opposite
direction to allow us to use the equation of the line. However, for this problem let’s just work with problem without the fact to make sure we can
do that type of problem

So, we'll need to parameterize this line and we know how to parameterize the equation of a line between two points. Here is the vector form of
the parameterization of the line.

Ft)=(1—1)(3,6)+t(1,-1)=(3—-2t,6—T7t) 0<t<1

We could also break this up into parameter form as follows.

r=3-—2t 0<t<1
y=6-"Tt

Either form of the parameterization will work for the problem but we’ll use the vector form for the rest of this problem.

We'll need the magnitude of the derivative of the parameterization so let’s get that.

P =(2-1  [Fol=y2'+ =3

We'll also need the integrand “evaluated” at the parameterization. Recall all this means is we replace the x/y in the integrand with the x/y
from parameterization. Here is the integrand evaluated at the parameterization.

32? — 2y = 3(3 — 2t)> — 2(6 — Tt) = 3(3 — 2t)> — 12 + 14¢

The line integral is then,

1
/33:2 —2yds :/ (3(3 —2t)? — 12+ 14t) /53 dt
0

C

1
1
= /53 [75(3 —2t)® — 12t + 7t2] —(8,/53
0

Note that we didn’t multiply out the first term in the integrand as we could do a quick substitution to do the integral.

\.







Section 5-2 : Line Integrals - Part | - Practice Problems Solutions

3. Evaluate /Gx ds where C is the portion of y = % from & = —1 to & = 2. The direction of C'is in the direction of increasing .

c

,

Here is a quick sketch of C' with the direction specified in the problem statement shown.

=]

(=

In this case we can just use the equation of the curve for the parameterization because the specified direction is going in the direction of
increasing = which will give us integral limits from smaller value to larger value as needed. Here is a parameterization for this curve.

F(t)=(t,#*) —1<t<2

We could also break this up into parameter form as follows.




—t
el —1<t<2
y=t

Either form of the parameterization will work for the problem but we’ll use the vector form for the rest of this problem.

We'll need the magnitude of the derivative of the parameterization so let’s get that.

7 (t) = (1,2t) [7 @] = /(1)* + (2)* = /1 + 4t

We'll also need the integrand “evaluated” at the parameterization. Recall all this means is we replace the x/y in the integrand with the x/y
from parameterization. Here is the integrand evaluated at the parameterization.

6x = 6t

The line integral is then,

312
2

(1+42%)

2
/Gmds:/ 6ty/1+ 4t dt =
-1

c

= 1(17% - 5%)
2

N | =

-1
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6. Evaluate /163/5 ds where C'is the portion of = y* from y = 0 to y = 1 followed by the line segment form (1, 1) to (1, —2) which in

c
turn is followed by the line segment from (1, —2) to (2, 0). See the sketch below for the direction.

y
I ]

[
g

r

To help with the problem let’s label each of the curves as follows,




Now let's parameterize each of these curves.

Cr: F(t)=(t"t) 0<t<1

Co: F(t)=(1—t)(1,1) +¢(1,-2) =(1,1-3t) 0<t<1

Cy: F(H)=(1—1)(1,-2) +t(2,0) = (1+£,2t—2) 0<t<1

For Cy we had to use the vector form for the line segment between two points instead of the equation for the line (which is much simpler of
course) because the direction was in the decreasing y direction and the limits on our integral must be from smaller to larger. We could have
used the fact from the notes that tells us how the line integrals for the two directions related to allow us to use the equation of the line if we’'d

wanted to. We decided to do it this way just for the practice of dealing with the vector form for the line segment and it's not all that difficult to
deal with the result and the limits are “nicer”.

Note as well that for C3 we could have solved for the equation of the line and used that because the direction is in the increasing x direction.
However, the vector form for the line segment between two points is just as easy to use so we used that instead.

Okay, we now need to compute the line integral along each of these curves. Unlike the first few problems in this section where we found the
magnitude and the integrand prior to the integration step we’re just going to just straight into the integral and do all the work there.

Here is the integral along each of the curves.

1 1
/16y5 ds :/ 16(t)5\/(4t3)2+(1)2dt:/ 16t° /16¢° + 1dt
0 0

C
1, « Y 1/ s




= 5 (16t° +1)*

/16y5 ds = /1 16(1 — 3t)° 1/(0)* + (—3)* dt = /1 48(1 — 3¢t)° dt

. =3 kl?f — 1) = T7.6770

Cy
1
:—§(1—31t)6 = —168
3 o T
1 1
16y5ds:/ 16(2t — 2)° 4/ (1)* + 22dt:/ 164/5(2t — 2)° dt
/ 162t -2°\J0) + 7t = [ 1615012
Cs
_ . _
44/5 256+/5
:%(21&—2)6 =— 3‘/ = —190.8111

Okay to finish this problem out all we need to do is add up the line integrals over these curves to get the full line integral.

1.2 2565
/16y5ds = (§<17z +1)) +(-168) + ( 3 ) = [-351.1341]
c

Note that we put parenthesis around the result of each individual line integral simply to illustrate where it came from and they aren’t needed in
general of course.

\,
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1. Evaluate / +/1+ ydy where C'is the portion of y = €?* fromz = 0 to & = 2.
c

,

Here is a quick sketch of C' with the direction specified in the problem statement shown.

(=

Next, we need to parameterize the curve.

3!
—
~
-

|
~
o+
o
4
~
o
A
~
A
[\V]




Now we need to evaluate the line integral. Be careful with this type line integral. Note that the differential, in this case, is dy and not ds as they
were in the previous section.

All we need to do is recall that dy = y’ dt when we convert the line integral into a “standard” integral.

So, let’s evaluate the line integral. Just remember to “plug in” the parameterization into the integrand (i.e. replace the x and y in the integrand
with the  and y components of the parameterization) and to convert the differential properly.

Here is the line integral.

2
/,/1+ydy:/ V1+e* (2e2t) dt
0
c

2

2 N
=13 (1+e*)? — 27| =274.4897

= [; (1+ e2t)%}

0

Note that, in this case, the integral ended up being a simple substitution.

\.
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2. Evaluate /2yda: + (1 — z) dywhere Cis portion of y = 1 — 2 fromz = —1toz = 2.
c

,

Here is a quick sketch of C' with the direction specified in the problem statement shown.

Next, we need to parameterize the curve.




Now we need to evaluate the line integral. Be careful with this type of line integral. In this case we have both a dx and a dy in the integrand.
Recall that this is just a simplified notation for,

/2ydm+(1—m) dy = /2ydm+/1—mdy
c c c
Then all we need to do is recall that dz = z’ dt and dy = y' dt when we convert the line integral into a “standard” integral.

So, let’s evaluate the line integral. Just remember to “plug in” the parameterization into the integrand (i.e. replace the z and y in the integrand
with the  and y components of the parameterization) and to convert the differentials properly.

Here is the line integral.

/2ydm+(1—x)dy:/2ydw+/l—mdy

C C
2

C
:/22(1—153) (1) dt+/ (1—1t) (-3t%) dt

-1

) )
:/ 2(1-¢) dt—3/ £ —t*dt

1 1
2

:/ 2 — 32 124t

y 2

_
o 4

Note that, in this case, we combined the two integrals into a single integral prior to actually evaluating the integral. This doesn’t need to be
done but can, on occasion, simplify the integrand and hence the evaluation of the integral.

14 3
= |t' -+ 2t
.

\.
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4. Evaluate / 1 + z® dz where C'is the right half of the circle of radius 2 with counter clockwise rotation followed by the line segment from

c
(0,2) to (—3, —4). See the sketch below for the direction.

7

To help with the problem let’s label each of the curves as follows,




Now let's parameterize each of these curves.
Cy: 7 (t) = (2cos(t),2sin(t)) —ir<t<lir

Cott (6) =(1—1) (0,2) +¢ (3, —4) = (34,2 —6f)

N

0<t<1

Now we need to compute the line integral for each of the curves.

/ 1+ 2% dz = /_ [1+ 2 cos(t))3] (—2sin(t)) dt
J I
= /‘57r —2sin(t) — 16cos® (t) sin(t) dt

1
37T

= (2 cos(t) + 4cos* (t)) ’%Wl =0

fﬂ-

‘/1+ﬁﬁdm:i/1[1+(—3ﬂﬂ(—3)&

Cy

1
:/m—3+8hﬂh
0

81
= (-3t +—1¢*
(o%4)

'o69

o 4




Don't forget to correctly deal with the differentials when converting the line integral into a “standard” integral.

Okay to finish this problem out all we need to do is add up the line integrals over these curves to get the full line integral.

69 69

1 3dx = (0 ) |22

/” v ()+<4>
C

Note that we put parenthesis around the result of each individual line integral simply to illustrate where it came from and they aren’t needed in
general of course.

\.
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5. Evaluate | 222 dy — zy da where Cis the line segment from (1, —5) to (—2, —3) followed by the portion of y = 1 — z2 from z = —2
Y Yy

c
to = 2 which in turn is followed by the line segment from (2, —3) to (4, —3). See the sketch below for the direction.

To help with the problem let’s label each of the curves as follows,



Now let's parameterize each of these curves.

Cr: F(t)=(1—t)(1,—5)+t(-2,-3)=(1—3t,-5+2t) 0<t<1
Cy: 7(t)=(t,1—-#*) —2<t<2
Cs: 7(t)=(t,—3) 2<t<4

Note that for C'; we had to use the vector form for the line segment between two points because the specified direction was in the decreasing
z direction and so the equation of the line wouldn’t work since the limits of the line integral need to go from smaller to larger values.

We did just use the equation of the line for Cj5 since it was simple enough to do and the limits were also nice enough.

Now we need to compute the line integral for each of the curves.

/2w2dy7myda:: /2x2dy7 /myda:




J J J
C, C C

= /1 2(1 - 3t)* (2) dt — /1 (1—3t) (=5 +2t) (-3) dt

1
/ 4(1—3t)* — 3 (6> — 17t + 5) dt
0

4 3 17
——(1-3t)"—3 (27— —t* +5t
G G )

/2az2dy7mydw: /2m2dy7 /mydaf:

Cy Cy Cy

2 2
:/ 2(t)% (—2t) dtf/ (t) (1 —¢*) (1) dt

2 -2

2
/ —3t3 —tdt
-2
(e-3)
4 2

/2:1:2 dy — zydz =
Cy

1

17
2

0

2
=0

-2

22% dy — / zydz
Cy

2(t)” (0) dt — / () (=3) (1) dt

9\

4

4
3tdt

(3

Don't forget to correctly deal with the differentials when converting the line integral into a “standard” integral.

[l
— o

4
=18
2

Also, don’t get excited when one of the differentials “evaluates” to zero as the first one did in the Cj5 integral. That will happen on occasion and
is not something to get worried about when it does.




Okay to finish this problem out all we need to do is add up the line integrals over these curves to get the full line integral.

/2:c2dy—xydac: <1?7> +(0) + (18) = 23
c

2

Note that we put parenthesis around the result of each individual line integral simply to illustrate where it came from and they aren’t needed in
general of course.

\,
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6. Evaluate /(av — y) dz — yx? dy for each of the following curves.
c

(a) C is the portion of the circle of radius 6 in the 15t, 2" and 3 quadrant with clockwise rotation.

(b) C'is the line segment from (0, —6) to (6, 0).

(a) C'is the portion of the circle of radius 6 in the 15t, 2" and 3" quadrant with clockwise rotation.

7

Let’s start off with a quick sketch of the curve for this part of the problem.

v

Here is the parameterization for this curve.

C: 7 (1) = (Beos(d). —6sin(t))  —m<t< 2




Here is the line integral for this curve.

/(w—y) dw—ymzdy:/(w—y) dw—/yw2dy
C C C

-/ " 6eos(t) — (~6sin(t))] (~6sin(t)) dt

27l'

- / iﬂ [(63in(t)) (6 cos())”] (6 cos(t)) dt

2m
[ —36 cos(t) sin(t) — 36sin® (t) — 1296 sin(t)cos® (t) dt

27l'

2m
= [ —18sin(2t) — 18 (1 — cos(2t)) — 1296 sin(t)cos® (t) dt

U

= (9cos(2t) — 18 + 9sin(2¢) + 324cos* (¢))[7"

2

=342 — 277 = 257.1770|

Don't forget to correctly deal with the differentials when converting the line integral into a “standard” integral.

\

(b) C'is the line segment from (0, —6) to (6, 0).

,

Let’s start off with a quick sketch of the curve for this part of the problem.




So, what we have in this part is a different curve that goes from (0, —6) to (6, 0). Despite the fact that this curve has the same starting and
ending point as the curve in the first part there is no reason to expect the line integral to have the same value. Therefore we’ll need to go
through the work and see what we get from the line integral.
We’'ll need to parameterize the curve so let’s take care of that.

C: 7(t)=(1—1t)(0,—6) +1(6,0) = (6t,—6+6t) 0<t<1

Note that we could have just found the equation of this curve but it seemed just as easy to just use the vector form of the line segment
between two points.

Now all we need to do is compute the line integral.

/(w—y)dw—ymzdy:/(fc—
[

y da:—/ya:zdy
c

)
(—6+ 61)] (6) dt — / 1 (-6 -+ 61) (60)°] (©) at

c c
1
[ ot~

0

1
/ 36 -+ 1296¢> — 1296t dt
0

(36t + 432¢° — 324¢*) | = [144

So, as noted at the start of this part the value of the line integral was not the same as the value of the line integral in the first part despite the
same starting and ending points for the curve. Note that it is possible for two line integrals with the same starting and ending points to have

\,

the same value but we can’t expect that to happen and so need to go through and do the work.




TABLE OF CONTENTS 103

0014 Question Solutions Spherical



SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES 1037

Figure 11 shows how E is swept out if we integrate first with respect to p, then ¢, and
then 6. The volume of E is

Visual 15.9 shows an animation of

e [ o= [ [ o dp

e o P3 p=cos ¢
—L de L sing 3 do

p=0

-~ 27 (/4 21

==, sind>cos3¢d¢=?[ 2 )

Ccos'e [t @
3

0

Figure 11.
z z z
—r
X y X y X y

pvariesfromOto cos ¢ ¢ variesfrom 0 to 7/4 o variesfrom0to 2.
FIGURE 11 while ¢ and 6 arec onstant. while @ is constant. ]
m Exercises
1-2 Plot the point whose spherical coordinates are given. Then find 9-10 Write the equation in spherical coordinates.
the rectangular coordinates of the point. Q @ 2=x2+y? (b) X*+22=9

a) (6, m/3, m/6)
Q a) (2, /2, m/2)

(b) (3, m/2, 3m/4)
(b) (4, —m/4, 7/3)

10/(@ x> —2x+y*+z°=0 (o) x+2y+3=1

3-4 Change from rectangular to spherical coordinates.
@ (0.-2,0 ®) (1,1, —v2)
4@ (1.0,v3) ® (V3. -1,243)

5-6 Describe in words the surface whose equation is given.

®) o= 3 G Jr=3

7-8 ldentify the surface whose equation is given.

1. p =snésing

8. p2(sin®p sin®0 + cos’p) = 9

Graphing calculator or computer required

Computer algebra
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1038 CHAPTER 15 MULTIPLE INTEGRALS

angle of /6.

21-34 Use spherical coordinates.

21. Evaluate [[f, (x* + y* + z*)*dV, where B is the ball with
center the origin and radius 5.

22. Evaluate [[f,, (9 — x* — y?)dV, where H is the solid
hemisphere x? + y? + 22 <9,z = 0.

23. Evaluate [[f. (x* + y?) dV, where E lies between the spheres
X2+ y?+z2=4andx®> +y*+z2=0.

24. Evaluate [[f. y*>dV, where E is the solid hemisphere
X2 +y?r+z2<9,y=0.

25, Evaluate [[f, xe* Y+ dV, where E is the portion of the unit
ball x? + y? + z? < 1 that lies in the first octant.

26. Evaluate [[[ xyz dV, where E lies between the spheres
p = 2and p = 4 and above the cone ¢ = 7/3.

21. Find the volume of the part of the ball p < a that lies between
the cones ¢ = /6 and ¢ = /3.

28. Find the average distance from a point in a ball of radius a to
its center.

29. (a) Find the volume of the solid that lies above the cone
¢ = 7/3 and below the sphere p = 4 cos ¢.
(b) Find the centroid of the solid in part (a).

30. Find the volume of the solid that lies within the sphere
x? + y? + z2 = 4, above the xy-plane, and below the cone

= Xy

31. (a) Find the centroid of the solid in Example 4.
(b) Find the moment of inertia about the z-axis for this solid.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the cBook and/or eChapter(s).
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We split the region of integration where the outside boundary changes from the vertical line x = 1 to the circle

#® +y* =a® orr = 1. Ry is aright triangle, so cos @ = L. Thus, the boundary between Ry and Rz is § = cos™ ' (2) in

a
polar coordinates, or y = v/a? — 1 x in rectangular coordinates. Using rectangular coordinates for the region Ry and polar

coordinates for R, we find the total volume of the solid to be
1 py/a2-1z
/ / \/lfx“"dyda:Jr/
o Jo I

If a > v/2, the cylinder 2 + y? = 1 completely encloses the intersection of the other two cylinders, so the solid of

/4
V=16

/ V1 —1r2cos?20rdrdd
0

0s—1(1/a)

intersection of the three cylinders coincides with the intersection of > + 2% = 1 and 5 4 2? = 1 as illustrated in

Exercise 15.6.24. Its volume is V = 16 [} [ /T — 27 dy da.

15.9 Triple Integrals in Spherical Coordinates

: o P T _@.1.1_3
1. (a) From Equations 1, z = psin¢cosf =6singcos g =655 =3,
:psind)sin@:ﬁsin%sin%:6-%~73:32£,and
z:pcosqb:ﬁcos%:6-§:3\/§,sothepointis (%,%,3%) in
rectangular coordinates.
S — Qi 3T T V2 —
(b) Tz =3sin=Fcosg =3-%5-0=0,
SN QP S 2 _ 32
y=3sinFsing =35 1=, and
z=3cos 3 =3 (—g) = —#,sothepointis (0,3—‘2/5,—¥) in
rectangular coordinates.
2. (a) z=2sinfcosy =2-1-0=0,y=2singsinf =2-1-1=2,
z =2cos§ = 2-0 = 0so the point is (0, 2, 0) in rectangular coordinates.
(b) z:4singcos(—§):4~§ %:\/6,

]
Il

y= 4sin% sin (—%) =4 (@) <—7)

-6
z=4cosZ =4- 1 = 2so the point is (\/6, —/6, 2) in rectangular

coordinates.
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SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES LI 585

. (a) From Equations 1 and 2, p = /22 +¢2 + 22 = /02 + (=2)2 + 02 = 2, cos ¢ = E = g =0 = ¢= %, and
cosf = ﬁ = WOW/Q) =0 = 0= 3; [since y < 0]. Thus spherical coordinates are (2, 3?#, g)
(b)p:mzlcosqﬁ:%:%ﬁ = ¢:%’r,and
cosf = psixn¢ = 25in?317r/4) =3 (\;51/2) = 7% = 0= ?%r [since y > 0]. Thus spherical coordinates

are 23—7T3—7T
474 )

Y s s A _ _z_\V3 _T __z 1
L@ p=22+y2+ 2 7\/1+0+372,cos¢:7p 5 = ¢ 6,andc056’ osing  Zsin(7/6) 1 =
0 = 0. Thus spherical coordinates are (27 0, %)
0 p=v3Fitl :4,C05¢:i:2—\/§:£ ¢:1,andcosezL:_i:£ =
p 4 2 6 psing  4sin(w/6) 2

11
0= T‘N [since y < 0]. Thus spherical coordinates are (4, %7 %)

. Since ¢ = %, the surface is the top half of the right circular cone with vertex at the origin and axis the positive z-axis.
. Since p = 3, 2° + y* + 2% = 9 and the surface is a sphere with center the origin and radius 3.

. p=sinfsing = p?=psinfsing < ?+y*+22=y < z2+y2—y+i+z2:z &

2® + (y — 2)® + 2° = 1. Therefore, the surface is a sphere of radius £ centered at (0, 3,0).

P> (sim2 ¢sin? @ + cos? ¢>) =9 o (psingsind)® + (pcosd)® =9 < y?+ 2% = 9. Thus the surface is a circular

cylinder of radius 3 with axis the z-axis.

(@) & = psingcosd, y = psin¢sinb, and z = pcos ¢, so the equation 2% = % + y? becomes
(pcos ¢)? = (psin ¢ cosB)? + (psin sinh)? or p? cos? ¢ = p?sin? ¢. If p # 0, this becomes cos? ¢ = sin? ¢. (p = 0
corresponds to the origin which is included in the surface.) There are many equivalent equations in spherical coordinates,

24 2, _ _ _ & 4 _ 3m
such as tan® ¢ = 1,2cos” ¢ = 1, cos2¢ = 0,oreven ¢ = 7, ¢ = °f.

b 2> +22=9 < (psinpcosh)’ + (pcosp)® =9 < p?sin®pcos® 4 p?cos®p =9 or

IS (sin2 ¢ cos? 0 + cos? ¢) =9.

L@zt -2 +yP+22=0 & (P+y°+2Y)-20=0 & p?—2(psingcosh) = 0orp=2sin¢cosd.

b)z+2y+32=1 < psingcosh+ 2psingsing + 3pcosdp =1orp=1/(sin¢pcosf + 2sinpsinb + 3cos @).

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
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1.

12,

13.

14.

15.

2 < p < 4 represents the solid region between and including the spheres of
radii 2 and 4, centered at the origin. 0 < ¢ < % restricts the solid to that
portion on or above the cone ¢ = %, and 0 < 0 < 7 further restricts the

solid to that portion on or to the right of the zz-plane.

1 < p < 2 represents the solid region between and including the spheres of
radii 1 and 2, centered at the origin. 0 < ¢ < 7 restricts the solid to that
portion on or above the zy-plane, and < 6 < 37’“ further restricts the solid

to that portion on or behind the yz-plane.

p < 1 represents the solid sphere of radius 1 centered at the origin.

37" < ¢ < 7 restricts the solid to that portion on or below the cone ¢ = =F.

p < 2 represents the solid sphere of radius 2 centered at the origin. Notice
that 22 4 y® = (psin ¢ cos 0)° + (psin ¢sin0)® = p? sin? ¢. Then
p=cscp = psing=1 = p’sin®p=a+y*>=1,50p<csco
restricts the solid to that portion on or inside the circular cylinder

r2+y2:1.

z > /22 + 42 because the solid lies above the cone. Squaring both sides of this inequality gives z? > 2% + 1> =

22> P+ 22 =p = 22=p’cos’o > %pz = cos’¢ > % The cone opens upward so that the inequality is
cos ¢ > %, or equivalently 0 < ¢ < Z. In spherical coordinates the sphere z = @* 4+ y* + 2% is pcos ¢ = p* =

p =cos¢. 0 < p < cos ¢ because the solid lies below the sphere. The solid can therefore be described as the region in

spherical coordinates satisfying 0 < p < cos¢, 0 < ¢ < 7.
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16. (a) The hollow ball is a spherical shell with outer radius 15 cm and inner radius 14.5 cm. If we center the ball at the origin of
the coordinate system and use centimeters as the unit of measurement, then spherical coordinates conveniently describe the
hollow ball as 14.5 < p < 15,0 <0 <27, 0 < ¢p < 7.

(b) If we position the ball as in part (a), one possibility is to take the half of the ball that is above the xy-plane which is

described by 14.5 < p < 15,0 < 0 < 27,0 < ¢ < 7/2.

17. z The region of integration is given in spherical coordinates by
E={(p,0,0)|0<p<3,0<6<m/2,0<¢<m/6}. Thisrepresents the solid
region in the first octant bounded above by the sphere p = 3 and below by the cone
¢ =7/6.

fﬂ/e /2 f03 prsingdpdfdy = Oﬂ/esin¢d¢ IW/Q do f03 p2dp

0 0 0
= [eoso]y* [0]57 [30°];

-(-F)Pe-Fe-v

a3

X

The region of integration is given in spherical coordinates by
E={(p,0,0) |1 <p<2,0<6<2m,m/2<¢ <} This represents the solid
region between the spheres p = 1 and p = 2 and below the zy-plane.
IS J PP singdpdpdo = [77d6 [T, singds [ p*dp
27 T 2
= [9]0 [_COSQS]w/z [%93]1

—2m()(F) = 4

19. The solid F is most conveniently described if we use cylindrical coordinates:

E={(r0,2)|0<6<Z,0<r<3,0<z<2}. Then
Iffg flx,y,z)dV = foﬂ/2f03f02 f(rcosO,rsing, z)rdzdrdo.

20. The solid F is most conveniently described if we use spherical coordinates:

E={(p0,¢)|1<p<2,%F<0<2m0<¢<Z} Then
Iffg flz,y,z)dV = foﬂ/z ff}; flz f(psingcos b, psin ¢sin b, pcos @) p* sin ¢ dp df do.
21. In spherical coordinates, B is represented by {(p,0,¢) |0 < p < 5,0 <0 < 27,0 < ¢ < 7 }. Thus
5@ + > +22)2dv = [ (]27r‘f()5(/)2)2;)2 singdpdf de = [ sin¢dg fOQTr do f05 P dp
= [~eosg]g [0]57 [307]5 = )2m)(B4%)

— 3125007 1 140,249.7
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22. In spherical coordinates, H is represented by {(p,@, ?) | 0<p<3,0<0<21,0<< % } Thus

[0 —2%—y*)dV = fﬂﬂ jo [9 — (p” sin® ¢ cos® 0 + p” sin® ¢sin® 0)] p* sin ¢ dp df do
= :/2 02"f03(9 — p?sin? ¢) p? sin ¢ dp dO do
= 52 [T [30° = 107 sin® ¢] 7~ sin g dpdo dep
= [7/2 27 (81sing — 22 sin® ¢) df dop
= [27d6 [7? [81sing — 22 (1 — cos® ) sin¢] d
=2r[—8lcos¢ — 23 (3 cos ¢>7cosq§)yr/2
=27[0+81+ %2 (-3)] = ¥x

23. In spherical coordinates, E is represented by {(p,0,¢) |2 < p <3,0<60 <27,0< ¢ < 7} and
2% 4 y* = p*sin® ¢ cos? 0 + p? sin® ¢ sin® O = p? sin® ¢ (0052 0 + sin? 9) = p?sin® ¢. Thus
[f[s@®+y?)dV = [T [27 [3(p%sin® ¢) p*sind dpdf do = [ sin® ¢do [77db [} p*dp

= [77(1 = cos® ¢) singdep [0 ]%[1[)5]2_[ cos¢ + % cos® ¢]; (2m) - £(243 — 32)
= (1= +1-3) () () = 2=

24. In spherical coordinates, E is represented by {(p,6,¢) |0 < p <3,0 <6 < 7,0 < ¢ < 7 }. Thus
Jffav?dv = [ [T [Z(psingsind)? p*singdpdf dp = [ sin® ¢do [ sin?0do [ p*dp
= [; (1 —cos® ¢) singde [ & 17c0520)d6f ptdp
= [-cos g+ 5eos’ ¢] 7 [3(0 - 3 sin26)] [% 5]3
=(3+3)Gm)(Gew)=3)(3) (H) =
25. In spherical coordinates, E is represented by {(p7 0,9) | 0<p<1,0<0<3,0<5¢0< % } Thus

I/ ze® TV gy = fo"/Q foﬂ/z fol (psin ¢ cos0)e?” p? sin ¢ dp df dp = f"/2 sin? ¢ dop fo"/z cos 0 do fol pie”” dp
= 0”/2 1(1 = cos2¢) do fﬂﬂ cos 0 df ( 1p%er ] - fol pe”2 dp)
[integrate by parts with u = p?, dv = ,oe"2 dp]

1
= [30 - 4sin26]7* sing]/ [40% — gef]o =(Z-0)(1-0(0+1)=1

2. [[[,axyzdV = fﬂ/3 7rf24(psin¢cos0)(psin¢sin9)(,ocos¢)p2sim¢d,od€d¢

—f"“sm d)cosqz&dgbf”sm@cosé’dé’f p°dp = [%sin qﬁ}ﬂ/%[ sir12¢9]§7r [lpﬁ}4 =0
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SECTION 16.8 STOKES' THEOREM 1127

m Exercises

1. A hemisphere H and a portion P of a paraboloid are shown. 10. F(x,y,z) =xyi+ 2zj + 3yk, Cis the curve of intersec-
Suppose F is a vector field on R* whose components have con- tion of the plane x + z = 5 and the cylinder x* + y? = 9
tinuous partial derivatives. Explain why

J} curl F - dS = JJ‘ curl F - dS 11. (a) Use Stokes’ Theorem to evaluate .fr F - dr, where
H P
F(x,y,z) = x’zi + xp?j + 2’k

and C is the curve of intersection of the plane
X +y + z =1 and the cylinder x> + »> = 9 oriented
counterclockwise as viewed from above.

(b) Graph both the plane and the cylinder with domains
chosen so that you can see the curve C and the surface
that you used in part (a).

@ (c) Find parametric equations for C and use them to graph C.

12. (a) Use Stokes’ Theorem to evaluate fc F - dr, where
F(x,y,z) = x’yi + 3x’j + xy k and C is the curve of
intersection of the hyperbolic paraboloid z = y* — x* and
the cylinder x> + y? = 1 oriented counterclockwise as
viewed from above.

(b) Graph both the hyperbolic paraboloid and the cylinder

2-6 Use Stokes’ Theorem to evaluate ||, curl F - dS.

F(x,y,z) =2ycoszi+ e'sinzj + xe'k, with domains chosen so that you can see the curve C and
is the hemisphere x> + y* + 22 = 9, z = 0, oriented the surface that you used in part (a).
upward (c) Find parametric equations for C and use them to graph C.
F(x,y,z) = x*2%i + y*2*j + xyz k, . s . .
QLS{S the part of the paraboloid = = x? + y? that lies inside the 1315 Verify that Stokes’ Theorem is true for the given vector
field F and surface S.

cylinder x? + y* = 4, oriented upward

Y S L 13. F(x,y,2) = —yi+xj— 2Kk,
F(x,y, z) = tan '(x*pz?) i + x%pj + x°2° k, ) ) Sis the cone z> = x> + y%, 0 < z < 4, oriented downward

Sis the cone x = /y? + z2, 0 < x < 2, oriented in the direc- . .

tion of the positive x-axis 14 F(x,p,z) = =2yzi+yj + 3xk,

S is the part of the paraboloid z = 5 — x? — y? that lies
5 F(x,p,2) =xyzi+xyj+xiyzk, above the plane z = 1, oriented upward

S consists of the top and the four sides (but not the bottom) . .
15. F(x,y,z) = yi+zj+xk,

of the cube with vertices (1, =1, *1), oriented outward N ] R .
S is the hemisphere x* + y? + z> = 1,y = 0, oriented in the
& (x,p,2) =eYi+e“j+xzk, direction of the positive y-axis
S is the half of the ellipsoid 4x? + y* + 4z? = 4 that lies to
the right of the xz-plane, oriented in the direction of the
positive y-axis

16. Let C be a simple closed smooth curve that lies in the plane
x + y + z = 1. Show that the line integral

7-10 Use Stokes’ Theorem to evaluate JL-F « dr. In each case C is lezdx — 2xdy + 3ydz

oriented counterclockwise as viewed from above. .
depends only on the area of the region enclosed by C and not

Fx,y,2) = (x+py)i+ (+2)j+E+x7)k on the shape of C or its location in the plane.
C is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1)

. . 17. A particle moves along line segments from the origin to the
Q Flx,y,2) =i+ (x+y2)j+ (xp - vz )k, points (1,0, 0), (1,2, 1), (0, 2, 1), and back to the origin
C is the boundary of the part of the plane 3x + 2y + z =1 under the influence of the force field

in the first octant

F(x,y,z) = z%i + 2xyj + 4%k

Find the work done.

Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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4. u(w,y,2) = c/ /2% +y? + 22,

F=-KVu=-K|— L z

c - cy s c K
(@2 + 12 +2°)3/2 (@2 2 + 22)3/2 J (22 + 2 + 2°)3/2

cK

:7(22+y2+22)3/2 (zi+yj+zk)

and the outward unit normal isn = l (zi+yj+zk).
a

cK cK

Thus F.n — (22 40?022 hiton§ 22 4024 22 — 420 F.n — — Hence the rate af heat flow

16.8 Stokes' Theorem

2. The boundary curve C is the circle 2%+ y2 =09, z = 0 oriented in the counterclockwise direction when viewed from above.
A vector equation of C'is r(t) = 3costi+ 3sintj, 0 < ¢ < 2w, sor'(t) = —3sinti+ 3costjand
F(r(t)) = 2(3sint)(cos 0) i+ ¢*“**(sin 0) j + (3cost)e® ™ k = 6sinti+ (3cost)e**™ " k. Then, by Stokes’ Theorem,
[fgcwlF-dS = [, F-dr= [J"F(r(t) r'(t)dt = [77(~18sin® ¢t + 0+ 0)dt = —18[Lt — L sin2t]2" = —18n.

3. The paraboloid z = 2% + ¢ intersects the cylinder 22 + 4 = 4 in the circle 2% + y? = 4, z = 4. This boundary curve C'
should be oriented in the counterclockwise direction when viewed from above, so a vector equation of C' is
r(t) =2costi+2sintj+4k,0 <t <2 Thenr'(t) = —2sinti+ 2costj,

F(r(t)) = (4dcos®t)(16) i+ (4sin? t)(16) j + (2 cost)(2sint)(4) k = 64 cos® ti + 64sin® ¢ j + 16sint costk,

(© 2012 Cengage Learning. All Rights Reserved. May niot be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in patt.
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SECTION 16.8 STOKES THEOREM [J 685
and by Stokes’ Theorem,
LeurlF-dS = [, F-dr= [ F(r(t))-r'(t)dt = [*"(—128 cos® t sint + 128sin® £ cost + 0) dt
S c 0 0

= 128[% cos® t + %sin3 t]iW =0

. The boundary curve C is the circle y* 4 2% = 4, 2 = 2 which should be oriented in the counterclockwise direction when

viewed from the front, so a vector equation of C'is r(t) = 2i+ 2costj + 2sintk, 0 < ¢ < 27. Then
F(r(t)) = tan~'(32costsin®t) i + 8 costj+ 16sin® tk, r'(t) = —2sintj + 2costk, and
F(r(t)) - r'(t) = —16sint cost + 32sin’ ¢ cos t. Thus

[[gcurlF-dS = § F-dr = ;32" F(r(t)) - r'(t)dt = :“(716 sint cost 4 32sin® ¢ cost) dt

= [-8sin*t+ Lsin® ¢]2" =0

. C'is the square in the plane z = —1. Rather than evaluating a line integral around C' we can use Equation 3:

ffs] curlF-dS = § F-dr = ff52 curl F - dS where S; is the original cube without the bottom and S is the bottom face
of the cube. curl F = 22z 4 (zy — 2xyz) j + (y — xz) k. For Sz, we choose n = k so that C' has the same orientation for
both surfaces. Then curl F - n = y — 2z = 2 + y on S2, where z = —1. Thus ffs, curl F-dS = fil fil(l. +y)dzdy =0

soffs‘ curl F - dS = 0.

. The boundary curve C is the circle 2 + 22 = 1, y = 0 which should be oriented in the counterclockwise direction when

viewed from the right, so a vector equation of C'is r(t) = cos(—t) i+ sin(—t)k = costi—sintk, 0 <t < 27. Then
r(t)) =i+e” i j—cos’t sintk,r'(t) = —sinti— costk, an r(t)) -r'(t) = —sint + cos” ¢ sint. Thus
P : costsint 2 k' k. and F ’ 3 Th
[[gcurlF-dS = § F-dr = 02" F(r(t)) -r'(t)dt = foh(f sint + cos® ¢ sint) dt

= [costf %cos“t]i7r =0

curl F = —2z1i — 2z j — 2y k and we take the surface S to be the planar region enclosed by C', so S'is the portion of the plane
z4+y+z=1loverD={(z,y)|0<z<1,0<y<1-—uaz} Since C is oriented counterclockwise, we orient S upward.

Using Equation 16.7.10, we have z = g(z,y) =1 —2 —y, P = —22,Q = -2z, R = —2y, and

JoFde= [f curlF-dS = [f, [~(~22)(~1) — (~22)(~1) + (~2y)]dA

= fnl 0171(72) dydr = -2 fnl(l —x)dr =—1

\
JoF-dr= [[jcarlF-dS = [[, [~(z—y)(~

= o [ 32y = §71 20 de = [ 314 82)(1 - 30) — § - 51— 30)?] da

) — () (=2) + 1] dA = [/* [P (04 30 — By) dy da

_ /s 81 2 15 1 _[_27.3 15,2 1. 71/3 _ 1 5 1 _ 1
7f0 (7?1 +Tm7§)dz7[ T+ FT gz}o =—5tx 3=
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m Exercises

-

1-12 Find the area of the surface. 6. (@) Usethe Midpoint Rule for double integrals with

he part of the planez = 2 + 3x + 4y that lies above the m=n= 22to esuzmatethe area of the surface
: z=xy+x*+y%, 0sx<2 0sys<2

X
ectangle [0, 5] > [1, 4] (b) Use a computer algebra system to approximate the sur-

=)
=
2

jThe part of the plane 2x + 5y + z = 10 that liesinside the face areain part (a) to four decimal places. Compare
cylinder x> + y>=9 with the answer to part (a).

3. The part of the plane 3x + 2y + z = 6 that liesin the 17. Find the exact area of the surfacez = 1 + 2x + 3y + 4y?,
first octant 1=sx<40=<y=<1

@ The part of the surface z = 1 + 3x + 2y? that lies above 18. Find the exact area of the surface

the triangle with vertices (0, 0), (0, 1), and (2, 1)

@The part of the cylinder y? + z? = 9 that lies above the rect-
angle with vertices (0, 0), (4, 0), (0, 2), and (4, 2) llustrate by graphing the surface.

z=1+Xx+y+x° —2sxs<1 -1sysl1

PR )
@;I;]he partl of the paraboloid z = 4 — x” — y* that lies cbove 19. Find, to four decimal places, the area of the part of the sur-
€ Xy-plane facez = 1 + x2y?that lies above the disk x2 + y2 < 1.

@he part of the hyperbolic paraboloid z = y? — x? that lies

between the cylinders x2 + y2 = 1and x? + y? = 4 20. Find, to four decimal places, the area of the part of the

surface z = (1 + x2)/(1 + y?) that lies above the square

8. Thesurfacez = 3(x¥2 +y%?), 0sx<1 0<y=<1 [x| + |y| < 1. lllustrate by graphing this part of the
The part of the surface z = xy that lies within the cylinder surface.
X hyt=1 21. Show that the area of the part of the planez = ax + by + ¢
10 The part of the sphere X2 + v2 + 22 — 4 that lies above the that projects onto aregion D in the xy-plane with area A(D)
G plangz =1 ¥ Y isyaz + b2+ 1A(D).
11. The part of the sphere x* + y? + z? = a? that lies within the 22. If you attempt to use Formula 2 to find the area of the top
cylinder x? + y? = ax and above the xy-plane half of the sphere x2 + y? + z2 = a?, you have adlight

problem because the double integral isimproper. In fact, the
integrand has an infinite discontinuity at every point of the
boundary circle x?> + y? = a® However, the integral can

be computed as the limit of the integral over the disk

x? + y? < t?ast — a~. Use this method to show that the
area of asphere of radius a is 4ma’

12. The part of the sphere x? + y? + z? = 4z that liesinside the
paraboloid z = x? + y?

13-14 Find the area of the surface correct to four decimal places
by expressing the areain terms of a single integral and using

your calculator to estimate the integral. 23. Find the area of the finite part of the paraboloid y = x? + 22

13. The part of the surface z = e** " that lies above the disk cut off by the planey = 25. [Hint: Project the surface onto
X2+ y?<4 the xz-plane.]

14. The part of the surface z = cos(x? + y?) that liesinside the 24. The figure shows the surface created when the cylinder
cylinder x> + y> =1 y? + z%2 = Llintersects the cylinder x? + z% = 1. Find the

area of this surface.

15. (a) Use the Midpoint Rule for double integrals (see Sec- T
tion 15.1) with four squares to estimate the surface area
of the portion of the paraboloid z = x? + y? that lies
above the square [0, 1] X [0, 1].
CAS (b) Use acomputer algebra system to approximate the sur- I N N
face areain part (a) to four decimal places. Compare \i (‘ y

with the answer to part (a).

Computer algebra system required 1. Homework Hints available at stewartcal culus.com
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is again 7 (see the figure). So
/2 20 cos 6 /2 90 cos
BE= k/ / (1= Lr)rdrds = k/ (102 — &) 220" ap
z/2Jo —n/2 =
=k [7/5, (200 cos?  — 490 cos® ) df = 200k [/, [£ + 4 cos 20 — (1 — sin® 0) cos 0] df

/2

=200k[20 4+ 1sin20 — 2sinf + 2 - 1sin®0]" o2

=200k[2+0—-2+2+24+0-2+2]
=200k(5 — 3) ~ 136k

Therefore the risk of infection is much lower at the edge of the city than in the middle, so it is better to live at the edge.

15.6 Surface Area

1. Here z = f(z,y) = 2+ 3z + 4y and D is the rectangle [0, 5] x [1,4], so by Formula 2 the area of the surface is

AWS) = [ V@ )P + [fy (2, 9)]2 + 1dA = [, V37 + 2 +1dA = v/26 [[,, dA
= V26 A(D) = v/26 (5)(3) = 15/26

2. z = f(x,y) = 10 — 22 — 5y and D is the disk 2> + y* < 9, so by Formula 2
A(S) = [, V(=22 + (—5)2 + LdA = /30 [[, dA = /30 A(D) = V30 (- 3%) = 9307

3. z = f(z,y) = 6 — 3z — 2y which intersects the zy-plane in the line 3z + 2y = 6, so D is the triangular region given by

{(z,y) |0<2<2,0<y<3— 2z} Thus
A(S) = [, EIP T (2P F1dA = VI [f,dA = VIEA(D) = VI (4 -2-3) =3VT
4 2 = f(x,y) =1+ 3z + 23> with 0 < 2 < 2y, 0 < y < 1. Thus by Formula 2,
AS) = [[5/T+ (3)2 4y)2dA:f01 210+ 162 dady = [ \/10+ 1697 [2]7—2" dy
= [l2y/TO+ 162dy = 2- & - 2(10 + 16y )3/2] = L(26%2 = 10%/2)

5.92422=9 = =912 fo=0,f,=—yO—y)? =

A(S) = //\/02 —y(9—42) 1/2]2+1dydT7//
// \/_dyd:z:—B/O [smlg}zzodﬁz?)[(sm 1(%))z]0—1251n (%)

6. z = f(x,y) =4 — x> — y* and D is the projection of the paraboloid z = 4 — 2? — y? onto the xy-plane, that is,

5 + ldydx

D= {(z,y) | 2%+ 4% < 4}. So fo =2z, fy =2y =
= [[pV(—22)2 + (—2y)? + 1dA = [[, /4(@? +y?) + 1dA = \/47“2 1rdrdf
r=2
= 7 [H@r+ 1)3/2] = [ (1T VT~ 1) do = 5 (17VIT - 1)
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554 [J CHAPTER15 MULTIPLE INTEGRALS
7. 2z = f(x,y) = v* — 2> with 1 < 2® +¢y* < 4. Then
AS) = [[p VT + 4 + 4y dA = [27 [PVI+ & rdrdd = [7do [7 rv/I+ 42 dr
=[0)" [1—12(1+4r2)3/2]j =2(17V17 - 5V5)

8 z=f(z,y) = 2(@*? +¢y**) and D = {(2,y)|0 <2 < 1,0 <y < 1}. Then f, = /2, f, = y*/? and

://D\/Wdfl:/;/olx/ererldydw:/Ol [§(£+y+1)3/2]y:1d7;

y=0

2 (@42 — @4 )] do = 2[R+ 27 - 2+ 1)5/2}:

_ 1;45(35/2 _95/2 _95/2 4 1) = %(35/2 _97/2 4 1)

9.z = f(z,y) =aywitha’ + > < Lso fo =y, fy =2 =

= [[p Vit aZ+ LdA= [Z7 [I 2+ 1rdrdo = 0‘“[%( +1)3/2] N
=0
= 2”1(2\/571)d072"(2\/§71)

10. Given the sphere #* + * + 2> = 4, when 2 = 1, we get z° + y* = 3s0 D = {(,y) | 2> + y* < 3} and
z = f(z,y) = /4 — 2? — y>. Thus
AS) = [[ iaa—a2 =)+ (ot =) e+ 1da
D

2n 3 2 27 /3 2 2
_ r _ r‘+4—r
,/0 /0 ”4ir2+1rdrd«97/0 '/0 \/74772 rdrdf

27 3 2
= ———drdf
/0 /0 V4 —r2 '

7':\/§
20— do = -2+ a)do = 26)7 = ax

Moz2= @ =2 — ¢ 2. = —w(a® —a® — )" V/2, 2

—1/2
5

=—y(a® —a? —¢?)

/ﬂ/ —a,(\/a2 —aQCOSZQ—a) do = 2a2/ﬂ/2 (1 — /1 —00529> do
—7/2

0

/2 x/2 /2
:2a2/ d072a2/ \/sin29d9:a2ﬂ'72a2/ sinfdf = a®(w — 2)
0 0 0
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20 Th, + f th | LD that i incida th, Lincl,

33-36 Find an equation of the tangent plane to the given
parametric surface at the specified point.

@x:u-ﬂz. y=3 z=u-v; (2,30

MU x=u"+1 y=0*+1 z=u+vwv; (5273
@r(u,v)=ucosvi+usinvj+vk; u=1 v=m/3

36. r(u,») =sinui + cosusinvj + sinvk;
u=7m/6, v=m/6

37-38 Find an equation of the tangent plane to the given
parametric surface at the specified point. Graph the surface and
the tangent plane.

37. r(u,v) = u?i + 2usinvj + ucosvk; u=1 v=0

SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS 1109

38 r(u0)=A—-u—2?i—vj—uk; (-1,-1,-1

39-50 Find the area of the surface.

l 39.)The part of the plane 3x + 2y + z = 6 that liesin the
first octant

The part of the plane with vector equation
r(u,v) = (Uu+ 02— 3u,1+ u— ) thatisgiven by
Osus2 -1lsvs1

The part of the planex + 2y + 3z = 1 that liesinside the
cylinder x? + y? = 3

42. The part of the conez = /x? + y? that lies between the
planey = x and the cylinder y = x?

43. Thesurfacez = 3(x¥2 +y¥?), 0<x<1,0<y<1

44. The part of the surface z = 1 + 3x + 2y? that lies above the
triangle with vertices (0, 0), (0, 1), and (2, 1)

The part of the surface z = xy that lies within the
cylinder x*> + y? =1
The part of the paraboloid x = y? + z? that lies inside the

cylindery? + z22=9

(47, Thepart of the surface y = 4x + z° that lies between the
planesx=0,x=1,z=0,andz =1
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33 r(u,v) = (u+v)i+3u?j+ (u—v)k
r,=i+6uj+kandr, =i—k,sor, xr, = —6ui+ 2j— 6uk. Since the point (2, 3, 0) correspondstou = 1, v =1,a
normal vector to the surface at (2, 3,0) is —61 + 2 j — 6 k, and an equation of the tangent plane is —6x + 2y — 6z = —6 or
3z —y+3z=3.

34, r(u,v) = (W +1)i+ @+ 1)j+ (u+o)k
r, =2ui+kandr, =3v?j+k,sor, x r, = —3v*i— 2uj + 6uv® k. Since the point (5,2, 3) corresponds to u = 2,
v = 1, a normal vector to the surface at (5,2, 3) is —31 — 4j + 12k, and an equation of the tangent plane is

—3(x—5)—4(y—2)+12(z—3) =0 or 3z +4y — 12z = —13.
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35.

36.

37.

38.

39.

r(u,v) =ucosvitusinvj+ovk = r(1,3)= (%7§7%)
r, =cosvi+sinvjandr, = —usinvi+ ucosvj+ k, so a normal vector to the surface at the point (% @, %) is

ro(LZ) xr(1, %) = (%i—&- éj) X (—éi—i- 1j +k) = % i — 3 j + k. Thus an equation of the tangent plane at

(38.5) 5 8@ - -3(u-F) +1-5 =00 Fa-fyro=5

r(u,v) =sinui+cosu sinvj+sinvk = r(%,%):(%,?,%).
w = cosui— sinusinvjand r, = cosucosvj+ cos vk, so a normal vector to the surface at the point (%,%,%) is
r(5.8) o (5:8) = (Fi-13) ¢ (34 F1) = —Fi- 25+ 20k

Thus an equation of the tangent plane at <%, @, %) is 7§(a: -3 - %(y - @) +38(z-1)=0o0r
\/§z+6y73\/§z:§ or 2z+4\/§y76z:1.

r(u,v) = u?i+2usinvj+ucosvk = r(1,0)=(1,0,1).
r, =2ui+2sinvj+cosvkandr, = 2ucosvj— usinvk,
so a normal vector to the surface at the point (1,0, 1) is

ry(1,0) x ry(1,0) = (2i+ k) x (2j) = —2i+4k.

Thus an equation of the tangent plane at (1,0, 1) is

—2(zx—1)+0(y—0)+4(z—1)=00r—z+2z=1.

r(u,v) =(1—-u?—vH)i—vj—uk

r, = —2ui—kandr, = —2vi— j. Since the point (-1, —1, —1) R
corresponds to u = 1, v = 1, a normal vector to the surface at

(-1,-1,-1)is

ru(1,1) X ry(1,1) = (=28 — k) x (=21 —j) = —i+2j + 2k.

Thus an equation of the tangent plane is —1(x + 1) +2(y +1) +2(2 +1) =0 or —x + 2y + 2z = —3.

The surface S is given by z = f(z,y) = 6 — 3z — 2y which intersects the zy-plane in the line 3z + 2y = 6, so D is the

triangular region given by {(z,y) |0 < 2 < 2,0 <y < 3 — $z}. By Formula 9, the surface area of S is

A(S)://D 1+<%>2+

= [y VIR F (DR dA = VIL [, dA = VILA(D) = VI (3 -2-3) = 3 VIA.
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4. r, =(1,-3,1),r, = (1,0,—1),and r,, X r, = (3,2, 3). Then by Definition 6,

A(S) = [[plruxry | dA = f0f1\323>\dvdu—\/_f0 duf dv = /22 (2)(2) = 4+/22

41, Here we can write z = f(z,y) =

% %z — gy and D is the disk 2> + y2 < 3, so by Formula 9 the area of the surface is

s T e [T o

VI A(D) = ‘n'(\/_) =14dr

0z 1 —1/2 T 0z y
42, 2= f(z,y) = /22 +132 = === (224> S2r = L= = ,and
f@y) = Va2 +y 5 =3 @ +Y°) Nz TR

Jz 02\’ z? > 2 42
I e Y oy v

Here D is given by {(z, y) | 0<az<l,z’<y< z}, so by Formula 9, the surface area of S is

A(S) = [J, VEA= [} [5 VEdyde =V [} (z — o) de = V3 [32* — 3]} = VE(3 ~ 3) =

8. 2= f(z,y) = 2(@*? +y**) and D = {(2,4) |0 <& < 1,0 <y < 1}. Then f, = 2'/2, f, = y*/> and
AS) = [[o 1+ WE) + (Vi) dA = [y [} VITz T ydyda
=1
=y { 1+y+1)3/2} 70d$:§f01 {($+2)3/27(ac+1)3/2] dx

1
= §[§(z $2)52 — 2(a + 1)5/2]0 = A (32977 952 L 1) = A(35/2 _97/2 1 1)

4. 2 = f(z,y) = 143z + 2y with0 < = < 2y, 0 < y < 1. Thus, by Formula 9,

AS) = [, VIT B+ y)2dA= [} [ /10 + 16y2 dwdy = [, 2y /10 + 16y dy

1
= &5 3(10+16y7)?] = (26¥2 — 1072
0

45. 2 = f(z,y) =aywithz? + > < Lsofu =y, fy =2 =
r=1
AS) = [fp VIFP Fa2dA= [ [ /P Irdrds = [ [4 ¢+ 1))~ a0
r=0
VI )= % (vE- )

46. A parametric representation of the surface is x = y* + 2%, y = y, 2 = 2z with 0 < y* + 2% < 9.

Hencer, x r. = (2yi+j) x (2zi+k) =i—2yj—2zk.

. e = by 0 -/ o1y (oL
Note: In general, if ¢ = f(y,z) thenry X r. =1i By i=3; k, and A(S) = . 1+ a9y + 92 dA. Then

A(S) = I 14 4y? +422dA = \/1+4r2rdrd6’

0<y?+22<9

3
= [2mag [PrVTF A dr = 27‘!‘[%(1 +4r2)3/2}0 — 2(37V3T - 1)
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FIGURE 2

Notice from Figure 2 that the tangent
vector points in the direction of
increasing 7. (See Exercise 58.)

The helix and the tangent line in
Example 3 are shown in Figure 3.

FIGURE 3

SECTION 13.2 Derivatives and Integrals of Vector functions 857

EXAMPLE 1
(a) Find the derivative of r(f) = (1 + #)i + te”'j + sin 2rk.
(b) Find the unit tangent vector at the point where r = 0.

SOLUTION

(a) According to Theorem 2, we differentiate each component of r:

r'() =371+ (1 —t)e”'j + 2cos 2tk
(b) Since r(0) = iand r'(0) = j + 2Kk, the unit tangent vector at the point (1, 0, 0) is

T = PO _ itk 1

2
ro]  Vita AT EE

EXAMPLE 2 For the curve r(f) = /7 i + (2 — #)j, find r'(¢) and sketch the position
vector r(1) and the tangent vector r'(1).

SOLUTION We have

r'(t) = !

NG

The curve is a plane curve and elimination of the parameter from the equations
x=\i,y=2- tgivesy = 2 — x% x = 0. In Figure 2 we draw the position vector
r(1) =i + j starting at the origin and the tangent vector r'(1) starting at the correspond-
ing point (1, 1). [ |

i

1
i—j and r'(1) = B

EXAMPLE 3 Find parametric equations for the tangent line to the helix with para-
metric equations

x=2cost y =sint z=t
at the point (0, 1, 7/2).
SOLUTION The vector equation of the helix is r(z) = (2 cos t, sin 1, 1), sO
r'(t) = (—2sint cost 1)
The parameter value corresponding to the point (0, 1, 7/2) is ¢ = /2, so the tangent

vector there is r'(7/2) = (=2, 0, 1). The tangent line is the line through (0, 1, 7/2)
parallel to the vector (=2, 0, 1), so by Equations 12.5.2 its parametric equations are

™
x= =2t y=1 z=—+t |
2
12
8
4
—2
OX

2z
0'5y0 05 12
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860 CHAPTER 13 Vector Functions

13.2 EXERCISES

1. The figure shows a curve C given by a vector function r(7). 13. r(t) = tsinti + e'costj + sinzcostk
(a) Draw the vectors r(4.5) — r(4) and r(4.2) — r(4).

14. r(t) = sinati + te” j + cos’ctk
(b) Draw the vectors ) ]

—_ 2
r(4.5) — r(4) ; r(4.2) - r(4) 15. r(r) =a + b + t°¢c
0.5 an 0.2 16. r(t) =ta X (b + r¢)
(c) Write expressions for r'(4) and the unit tangent
vector T(4). 17-20 Find the unit tangent vector T() at the point with the
(d) Draw the vector T(4). given value of the parameter 7.
y R 17.0(0) = ( — 201 + 3040 + 12), 1=2
18. r(7) = {tan 't,2¢* 8te’), t=10
r4.5) . . .
1 0 19. r(r) = costi+ 3tj + 2 sin2tk, t=0
r(4.2) 20. r(1) = sin’*ti + cos’tj + tan’tk, t= /4
P
) 21. If r(s) = (1, 1% 1), find v'(¢), T(1), r"(r), and ¥'(£) X r"(7).
0 1 Y 22, Ifr(r) = (e, e %, te?), find T(0), r"(0), and r'(¢) - r"(z).

23-26 Find parametric equations for the tangent line to the curve

2. (a) Make a large sketch of the curve described by the vector with the given parametric equations at the specified point.

function r(f) = (t% t), 0 < t < 2, and draw the vectors

IZ
(1), v(1.1), and r(1.1) — r(1). B.x=r+1 y=4/i, z=¢"" (2,4,1)
(b) Draw the vector r'(1) starting at (1, 1), and compare it 24. x=In(t+ 1), y=rcos2, z=2% (0,0,1)
with the vector
r(1.1) = (1) 25. x=e¢'cost, y=e'sint, z=e¢"; (1,0,1)
0.1 26. x=+/t2+3, y=In(t>+3), z=1, (2,In4,1)
Explain why these vectors are so close to each other in
length and direction. 27. Find a vector equation for the tangent line to the curve of
38 intersection of the cylinders x> + y> = 25 and y* + z> = 20
(a) Sketch the plane curve with the given vector equation. at the point (3, 4, 2).
(b) Find r'(z). 28. Find the point on the curve r(f) = (2 cos t,2sint, e'),
(c) Sketch the position vector r(z) and the tangent vector r'(f) for 0 < ¢ < m, where the tangent line is parallel to the plane
the given value of 7. VAx+y=1

— (-0 7 - _
Sr() = =204 0, =1 [EH 29-31 Find parametric equations for the tangent line to the curve

() =410, =1 with the given parametric equations at the specified point. Illus-
trate by graphing both the curve and the tangent line on a common
screen.

=i i =
cr(f) =eli+ 2, =0 29. x=t,y=e¢ ', z=2t—1* (0,1,0)

- x(t) = 4sinti—2costj, 1=3m/4 30. x =2cost, y=2sint, z = 4cos2t; (ﬁ,],2)

3
4
5. r(1) =e* i+ e, t=0
6.
7
8.

. r(t) = (cost+ 1)i+ (sint — 1), t=—7/3 3. x=tcost, y=1 z=tsine; (—,m0)

9-16 Find the derivative of the vector function. 32. (a) Find the point of intersection of the tangent lines to the

9. r(1) = <\/t - 2,3, ]/t2> curve r(t) = (sin 7rt, 2 sin 7rt, cos ) at the points
ot s 43 where t = 0 and r = 0.5.
10 x(f) = (™1~ I A (b) Ilustrate by graphing the curve and both tangent lines.

11. r(t) = t*i + cos(t?) j + sin*rk
) )5+ si , 33. The curves ri(¢) = (t,t% t*) and r»(¢) = (sin ¢, sin 2¢, 1)
1 t t

12. (1) = 0 i+ — : intersect at the origin. Find their angle of intersection correct

Jjt+
1+t to the nearest degree.
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LY BESAY 4 42 43 AN 19z 242\ Tl AR 1.9 9 A L/ (1] 12 1 02 | 92 EW]

T(Ov T ITZU T IjT (O T TZC T IZjT

23. The vector equation for the curve is r(t) = (1 + 2v/¢,t* — 1> + t), so r'(t) = (1/v/1,3t> — 1,3t> 4 1). The point
(3,0,2) corresponds to t = 1, so the tangent vector there is ¥'(1) = (1, 2,4). Thus, the tangent line goes through the point

(3,0,2) and is parallel to the vector (1, 2, 4). Parametric equations are v = 3 + ¢,y = 2t, z = 2 + 4t.

24. The vector equation for the curve is r(t) = <et, tet, tet” >, sor'(t) = <et, te! 4 e, 2t2et” 1 et > The point (1,0, 0)
corresponds to ¢ = 0, so the tangent vector there is r’(0) = (1,1, 1). Thus, the tangent line is parallel to the vector (1,1,1)

and includes the point (1,0, 0). Parametric equationsarex =14+ 1-t =14+t y=0+1-t =t 2=04+1-t =1.

25. The vector equation for the curve is r(t) = (e~ cost, e *sint, e~ "), so
r'(t) = (e " (—sint) + (cost)(—e™"), e~ cost + (sint)(—e "), (—e™"))
= (—e " *(cost +sint),e”‘(cost —sint), —e ")
The point (1,0, 1) corresponds to ¢ = 0, so the tangent vector there is
r'(0) = (—€°(cos 0 + sin0), e’ (cos 0 — sin 0), —e”) = (—1,1, —1). Thus, the tangent line is parallel to the vector
(—1,1, —1) and parametric equationsare z = 1+ (—1)t =1 —t,y=0+1-t=t,z=1+ (-1)t =1—+¢.
26. The vector equation for the curve is r(t) = (v + 3,In(t* + 3),t), so r'(t) = (t/V2 + 3,2t/(t> + 3),1). At (2,In4, 1),
t=1andr'(1) = <%, %, 1>. Thus, parametric equations of the tangent line are z = 2 + %t, y=Ind+ %t, z=1+t

27 Eirct xue etrize the curve (1 af intercoction The nraiection af (' anta the oo nlane ic cantained in the circle
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Section 3-1 : Tangent Planes And Linear Approximations - Practice Problems Solutions

2. Find the equation of the tangent plane to z = z4/x2 + y2 + y3 at(—4,3).

7

First, we know we'll need the two 15t order partial derivatives. Here they are,

2

z? zyY
fz:\/x2+92+72 5 fy= 3 2+3y
VIl +y VZity

Now we also need the two derivatives from the first step and the function evaluated at (—4, 3) . Here are those evaluations,

F43=7  L(a3 =%  f-43 =12

The tangent plane is then,

41 123 41 123




Section 3-1 : Tangent Planes And Linear Approximations - Practice Problems Solutions

3. Find the linear approximation to z = 4z? — ye?**¥ at (—2,4) .Then approximate f(-1.08, 4.02)

7

Recall that the linear approximation to a function at a point is really nothing more than the tangent plane to that function at the point.
So, we know that we'll first need the two 15t order partial derivatives. Here they are,

fz — 8r — 2ye2z+y fy — _e2z+y _ ye2z+y

Now we also need the two derivatives from the first step and the function evaluated at (—2, 4) . Here are those evaluations,

f(—2,4) =12 fo(—2,4) = —24 fy(=2,4) = -5

The linear approximation is then,

|L(z,y) =12—24(z+2) —5(y—4) = —24z — 5y — 16
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SECTION 16.4 GREEN'S THEOREM 1089

y with center the origin and radius a, where a is chosen to be small enough that C’ lies
inside C. (See Figure 11.) Let D be the region bounded by C and C'. Then its positively

o ¢ oriented boundary is C U (—C’) and so the general version of Green’s Theorem gives
b x Lde+Qdy+J‘7C,de+Qdy=ﬂ<%—%>dA
5
FIGURE 11 -l [(322; 7o yXJ Ao
b
Therefore jc Pdx+ Qdy = fc, Pdx + Qdy
that is, JC F.dr= JC F-dr

We now easily compute this last integral using the parametrization given by
r(t) =acosti + asintj, 0 <t =< 27 Thus

[LFedr=[ Fedr= ["Fo@) - rod

r2» (—asint)(—asint) + (acost)(acost rom
- [rizasnbCany * @8 D@D ¢ _ (gt~ 27
0 a’cos’t + a’sin’t 0
We end this section by using Green’s Theorem to discuss a result that was stated in the
preceding section.

SKETCH OF PROOF OF THEOREM 16.3.6 We’re assuming that F = Pi + Q] is a vector field
on an open simply-connected region D, that P and Q have continuous first-order partial
derivatives, and that
P J
P _ R throughout D
ay  ax
If C is any simple closed path in D and R is the region that C encloses, then Green’s The-
orem gives
d P ¢
fLF-dr={ Pdx+Qdy - j 9Q 9P da— ([ 0da=o0
c Je X ay A
R

A curve that is not simple crosses itself at one or more points and can be broken up

into a number of simple curves. We have shown that the line integrals of F around these
simple curves are all 0 and, adding these integrals, we see that [ F - dr = 0 for any
closed curve C. Therefore [_F - dr is independent of path in D by Theorem 16.3.3. It fol-

lows that F is a conservative vector field. [
('8 Exercises
1-4 Evaluate the line integral by l;f;(&ﬂ:!i@":' @ ¢>C xy dx + x2dy,

() using Green’s Theorem. C is the rectangle with vertices (0, 0), (3, 0), (3, 1), and (0, 1)

@ §o (x = y) dx + (x + y) dy, e xy dx + x?y* dy,
C is the circle with center the origin and radius 2 C is the triangle with vertices (0, 0), (1, 0), and (1, 2)
E Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.com
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e ¢, x?y?>dx + xy dy, C consists of the arc of the parabola
y = x2from (0, 0) to (1, 1) and the line segments from (1, 1)
to (0, 1) and from (0, 1) to (0, 0)

5-10 Use Green’s Theorem to evaluate the line integral along
the given positively oriented curve.

o xy?dx + 2x%y dy,
C is the triangle with vertices (0, 0), (2, 2), and (2, 4)
6. f.cosydx + x’sinydy,

C is the rectangle with vertices (0, 0), (5, 0), (5, 2), and (0, 2)
o (y + ) dx + (2x + cosy?)dy,
C is the boundary of the region enclosed by the parabolas
y =x%*and x = y?

J"Cy" dx + 2xy®dy, Cis the ellipse x2 + 2y2 = 2

9. [oy*dx — x%dy, Cisthecircle x> + y> =4

10. [, (1 —y®)dx + (x*+e)dy, Cisthe boundary of the
region between the circles x? + y?> = 4and x> + y2 =9

11-14 Use Green’s Theorem to evaluate | F - dr. (Check the
orientation of the curve before applying the theorem.)

@ F(x,y) = (ycosx — Xy sinx, Xy + X cos X),
C is the triangle from (0, 0) to (0, 4) to (2, 0) to (0, 0)

F(x,y) = (e *+ y% e + x?),
C consists of the arc of the curve y = cos x from (— /2, 0)
to (7r/2, 0) and the line segment from (7/2, 0) to (—/2, 0)

F(x,y) = (y — cosy, xsiny),
C s the circle (x — 3)* + (y + 4)° = 4 oriented clockwise

@F(x, y) = <\/x2 +1, tan’1x>, C is the triangle from (0, 0)
to (1, 1) to (0, 1) to (0, 0)

15-16 Verify Green’s Theorem by using a computer algebra sys-
tem to evaluate both the line integral and the double integral.

15. P(x,y) = y%*, Q(x,y) = x%’,
C consists of the line segment from (-1, 1) to (1, 1)
followed by the arc of the parabolay = 2 — x? from (1, 1)
to (—1,1)

16. P(x,y) = 2x — x%°,  Q(x,y) = x3y5,
C is the ellipse 4x2 + y?> = 4

17. Use Green’s Theorem to find the work done by the force
F(x,y) = x(x + y)i + xy?] in moving a particle from the
origin along the x-axis to (1, 0), then along the line segment
to (0, 1), and then back to the origin along the y-axis.

18. A particle starts at the point (—2, 0), moves along the x-axis
to (2, 0), and then along the semicircle y = /4 — x2 to the
starting point. Use Green’s Theorem to find the work done
on this particle by the force field F(x, y) = (x, x® + 3xy?).

19.

A9 2.

21.

22,

23.
24

25,

26.

21.

28.

29.

Use one of the formulas in [5] to find the area under one
arch of the cycloid x =t — sint,y = 1 — cos t.

If a circle C with radius 1 rolls along the outside of the
circle x* + y? = 16, a fixed point P on C traces out a
curve called an epicycloid, with parametric equations

x =5cost — cos5t,y = 5sint — sin 5t. Graph the epi-
cycloid and use [5] to find the area it encloses.

(a) If C is the line segment connecting the point (x1, y1) to
the point (x,, y), show that

jcxdy —ydx =Xy, — Xoy1

(b) If the vertices of a polygon, in counterclockwise order,

are (X1, ¥1), (X2, ¥2), . . ., (Xn, Ya), show that the area of
the polygon is
A= %[(lez = X2Y1) + (X2Ys — Xay2) + - - -

+ (Xn-1¥n = Xn¥Yn-1) + (Xay1 — X1Yn)]

(c) Find the area of the pentagon with vertices (0, 0), (2, 1),
(1,3),(0,2),and (-1, 1).

Let D be a region bounded by a simple closed path C in the
Xy-plane. Use Green’s Theorem to prove that the coordinates
of the centroid (X, y) of D are

P Y
X = A fcx dy
where A is the area of D.

Use Exercise 22 to find the centroid of a quarter-circular
region of radius a.

Use Exercise 22 to find the centroid of the triangle with
vertices (0, 0), (a, 0), and (a, b), where a > 0 and b > 0.

A plane lamina with constant density p(x, y) = p occupies a
region in the xy-plane bounded by a simple closed path C.
Show that its moments of inertia about the axes are
__P [ _P s
I 3f§cy dx ly 3§>cx dy
Use Exercise 25 to find the moment of inertia of a circular

disk of radius a with constant density p about a diameter.
(Compare with Example 4 in Section 15.5.)

Use the method of Example 5 to calculate |, F - dr, where

Co22xyi+ (yP—x9j
Flx,y) = (XZ + yz)z
and C is any positively oriented simple closed curve that
encloses the origin.

Calculate | F - dr, where F(x,y) = (x* +y, 3x — y?) and
C is the positively oriented boundary curve of a region D
that has area 6.

If F is the vector field of Example 5, show that [ F - dr = 0
for every simple closed path that does not pass through or
enclose the origin.
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36. (a) Here F(r) = cr/|r|> and r = xi + yj + zk. Then f(r) = —c/|r| is a potential function for F, that is, Vf = F.
(See the discussion of gradient fields in Section 16.1.) Hence F is conservative and its line integral is independent of path.

Let P, = (xl,yl, Z]) and P, = (Iz,yz,Zz).

c c 1 1
W= F.dr=f(P)— f(P)=— + :c(—f—>.
fc ( 2) ( 1) (x§+y§+z§)l/2 (z +y1+2 )1/2 di da

(b) In this case, c = —(mMG) =

1 1
W= 7mMG(1.52 x 1017~ TAT x 1011>

= —(5.97 x 10**)(1.99 x 10%°)(6.67 x 107)(—2.2377 x 107 %) ~ 1.77 x 10** J

(c) In this case, ¢ = €qQQ =

= “1Q<1o - WB%) = (8.985 x 10%)(1)(—1.6 x 107'?) (—10"%) ~ 1400 J.

16.4 Green's Theorem

1. (a) Parametric equations for C are x = 2cost, y = 2sint, 0 <t < 27. Then
$o(x—y)de+ (z+y)dy = f [(2cost — 2sint)(—2sint) + (2cost + 2sint)(2cost)] dt
= [ (4sin® t + dcos? ) dt = [ ddt = 4t])" =8
(b) Note that C' as given in part (a) is a positively oriented, smooth, simple closed curve. Then by Green’s Theorem,
folo—p)de+ @ +y)dy=[f, [ & @+y) — & @—y)]dAd=[[,[1 - (-1)]dA=2 ][, dA

=2A(D) =27(2)? = 8=

2@ 7 Ciiox=t = de=di, y=0 = dy=0dt, 0<t<3.
o Cy 3.1 Coix=3 = de=0dt, y=t = dy=dt, 0<t<1.

c, D c Cy:a=3—-1t = do=—dt, y=1 = dy=0dt, 0<t<3.

0 C 3.0 x Cy:2=0 = dr=0dt, y=1—t = dy=—dt, 0<t<1

Thus fcxyda:er?dy = ¢ ryde + x? dy*fOOdt+f09dt+f0 —t)(=1) dtJrfO 0dt

C1+Ca+C3+Cy
= [0ty + [22 -3 =9+3-9=2
(b)fC‘LydLL*i’.L dy = [[, {ai 2)70%(1;/)] dA:fosfol(sz:L‘)dydz:f(fz'dwfoldy:[%wz]g-lzg

3. (a) y w2 Cirx=t = de=dt, y=0 = dy=0dt, 0<t<1.

Cyzx=1 = dr=0dt, y=t = dy=dt, 0<t<2.

C, Cs:x=1—-t = de=-dt, y=2-2t = dy=-2dt, 0<t<1.

(&

of ¢ 10 *
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Thus

(b) §, zyde + 2y dy

$o oy do + 2y dy = § vy dz + 2y® dy

Ci1+Ca+C3
= [Lodt+ [2e3dt+ [ [-(1—)(2—2t) —2(1 —£)*(2 — 2t)°] dt

=0+ (B + B0 -0+ 3000y =1 B =3

= [, [& @) - & )] da = [} [ ey — ) dydo
= fy [Bayt —ay)' T de = [ (85 —20%)dv =4~ =2
(a1 Ci:x=t = do=dt, y=t> = dy=2tdt, 0<t<1

Cox=1—-t = doe=—dt,y=1 = dy=0dt, 0<t<1

C3: =0 = dr=0dt,y=1—-t = dy=—-dt, 0<t<1

4. (a) 7 c
(0, 1)1
cy P “
y=x*
0 X
Thus
$o 2y do + zy dy

®) . 2%y? do + zy dy

= ¢ 2?y? dx + xy dy
C1+C2+C3

= [y [P dt + ()2t d)] + [} [(1—1)7(1)*(—dt) + (1 —£)(1)(0dt)]
+ fiy [(0)2(1 = )2(0dt) + (0)(1 — t)(—dt)]
= [y (2t dt+ [} (-1+2t—t3)dt+ [} 0dt

= [+ 30 [t -] 0= () + (11— 5) = £

105
2 2 vt 2
—// 8T(zy ay y)]dA:/ /2(y—2m y) dy dz
0 x
=y [30° — @] T de = f) (5 —a® = gat +a%) da
R o it
The region D enclosed by C'is given by {(z,y) | 0 <z < 2,2 <y < 2z}, s0
Jozy de + 227y dy = [, {31 (22%y) — (xy) dA
:f02 fjx(4xy—2zy) dy dx
= Jo [ov?], 2 da

= [Z32%de = 32']2 =12

5. ¥y
41 2,4)
y=2x ¢
b 2,2)
y=x
0 2 X

6. The region D enclosed by C'is [0, 5] x [0, 2], so

Jocosydr + #?sinydy = [[, [% (2? siny) — a% (cos y)] dA = f05 j;f [2zsiny — (—siny)| dy dz

= f05(2z +1)dx f02 sinydy = [¢° + x}z - cosy}z =30(1 — cos2)
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7. fc(y+e\/_)dw+(2w+cosy dy = [, [61(2z+cosy <y+e )}dA

= [ [ @ - dedy = [} (y"/* —y*)dy =}

8. fc yrde + 22y dy = ffD [% (2zy®) — 01/ (v* )} dA = ffD(st — 4% dA
:72ffny3dA:O

because f(x,y) = y* is an odd function with respect to y and D is symmetric about the z-axis.

Ilp [& (<o) = & )] dA = [, (~30% = 3y*) dA = [37 [ (=3r*) rdr do

=3[y d6 [§r®dr = —3(2m)(4) = ~24

9. [,yPde—ady

0. [o(1 =) dn + (@ + ) dy = [, [ai (@ +e’) -2 (1 y‘”')} dA = [[, (32 + 3y%) dA
f2 3r? rdrd9—3f 4o f237‘3dr
= 3[9] 2T [4r4)S = 3(2m) - 1(81 — 16) = 1%
M. F(z,y) = (ycosz — xysinx, xy + = cosx) and the region D enclosed by C' is given by

{(z,y) |0 <2 <2,0<y<4-—2z}. Cistraversed clockwise, so —C' gives the positive orientation.

JoF-de=—[ c(ycosz7zys1nz)d1+(xy+JJcosx)dy—*ffD{, warxcosw)7—(ycosx71ysmw)} dA

~[f,(y — xsinz + cosx — cosx + wsinz) dA = — [ [+ ydydx

= —f02 [%yﬂiiéfn‘ dr = —f02 14-22)°de = —f02(8 — 8z +2z%) dv = — [8z — 4a” + %xs}i

—(16-16+ L —0) =18

12. F(z,y) = (e * +y°, e ¥ + 2”) and the region D enclosed by C'is given by {(z,y) | —7/2 <z < 7/2,0 < y < cosx}.
C is traversed clockwise, so —C' gives the positive orientation.
fCF .dr = —f_ (e” +y2) dz + (e’y +x2) dy=—[|, [5—1 (e’y +12) — 8% (671 +y2)] dA
e e = [T 2y )
=— ffﬂ%(b: cosx — cos® x) dr = — ff/ (2z cosz — 3(1 + cos 22)) da

/2

x)2 [integrate by parts in the first term]

= — [stinx + 2cosx — % (:z: + % sin2x)}
:—(w—iw—w—iﬂ) =1ir
13. F(z,y) = (y — cosy, zsiny) and the region D enclosed by C'is the disk with radius 2 centered at (3, —4).
C is traversed clockwise, so —C' gives the positive orientation.

JoFdr == [ (y—cosy)do+ (wsiny) dy = — [[,, [& (@siny) — £ (y - cosy)] dA

=—[[,(siny — 1 —siny)dA = [, dA=areaof D = 1(2)* =
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14. F(z,y) = <\/z2 +1,tan"! ac> and the region D enclosed by C'is given by {(z,y) |0 <z <1,z <y <1}

C' is oriented positively, so

JoF-dr = [,V/2% +1dx + tan~ xdy—//[ (tan™ lz)—%(\/m)}dfl

1ol 1 1y . 1y
- —— —0)dyde= | —= y'Z,dov=| —=(1—-a)d
/(;A <l+z2 ) yar /0 1+ 22 [y]y:I v /0 l+x2( @) dz
1 1
1 T 1 1 2 T 1
= —— ——— |dz = |t —=In(1 =——=In2
/o <1+x2 1+z2> v [an vy +x)L 1 2"
15. Here C' = Cy + C'; where Y
C can be parametrizedasz =¢, y=1, —1 <t <1,and C,
Coisgivenbyz = —t, y=2—1%, —1<t<1. D
Then the line integral is LD G (0
§ yPe"da+a’eldy= fil[l el +t%e- 0] dt
C1+Ca 2 ' 0 ]
+ 112 =) (1) + ()P (—2t)] dt - b
= fil[el — (2t — 2t3827L2] dt = —8e + 48¢~!
according to a CAS. The double integral is
1 2w
// (8_ - 8_> dA = / / (2ze¥ — 2ye™) dy dx = —8e + 48", verifying Green’s Theorem in this case.
€T Y -1J1

16. We can parametrize C' as ¢ = cosf, y = 2sinf, 0 < 0 < 2. Then the line integral is
$.Pdr+Qdy= [ [2cos0 — (cos0)*(25in0)°] (—sin @) do + [ (cos0)*(2sin0)® - 2 cos 0 df

= f02W[72 cos fsin 0 + 32 cos® Osin® 0 + 512 cos* Osin® 0] d§ = 7,

. . . 0Q P Vica? 8 34
according to a CAS. The double integral is — = = (327y° + 5z°y") dy dow = Tm.
p\0z Oy —V/4- 4Jc2

17. By Green’s Theorem, W = [, F - dr = [, x(z +y) dz + 2y* dy = [[,(y* — x) dA where C is the path described in the

question and D is the triangle bounded by C'. So
W= fol Olﬂv(y2 —z)dydr = fo [3y — Lﬂy} = gy = fol (01— z)? —z(1—2))de
B
18. By Green’s Theorem, W = [, F - dr = [, xdz + (2° + 3zy®) dy = [, (32 + 3y® — 0) dA, where D is the semicircular

region bounded by C'. Converting to polar coordinates, we have W = 3 f02 o r?-rdfdr =3r Hrﬂi =127

19. Let C be the arch of the cycloid from (0, 0) to (27, 0), which corresponds to 0 < ¢ < 27, and let C3 be the segment from

(2,0) to (0,0), so Ca is given by & = 2 — ¢,y = 0,0 < ¢ < 2. Then C' = C1 U C% is traversed clockwise, so —C' is
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SECTION 16.9 THE DIVERGENCE THEOREM 1133

Another application of the Divergence Theorem occurs in fluid flow. Let v(x,y, z) be
the velocity field of a fluid with constant density p. Then F = pv is the rate of flow per
unit area. If Po(Xo, Yo, zo) isapoint inthe fluid and B, isaball with center P, and very small
radiusa, thendiv F(P) = div F(P) for al pointsin B, sincediv F is continuous. We approx-
imate the flux over the boundary sphere S, as follows:

Q"F-ds:@'dideVzﬁ

Ba

div F(Po) dV = div F(Po)V(B.)

This approximation becomes better as a — 0 and suggests that

srrittirgy div F(Py) = lim e[| F - o5
A N I /P/V 2/ %
—v e ’ 1 t ’ 7 I/V
L ~ :A Equation 8 says that div F(Po) is the net rate of outward flux per unit volume at Po. (This
o . isthe reason for the name divergence.) If div F(P) > 0, the net flow is outward near P and
— B— Piscalled asource. If div F(P) < 0, the net flow isinward near P and P is called asink.
. P For the vector field in Figure 4, it appears that the vectors that end near P; are shorter
N than the vectors that start near P;. Thus the net flow is outward near Py, so div F(Py) > 0
Y 'fz N and P, is a source. Near P,, on the other hand, the incoming arrows are longer than the
APttt outgoing arrows. Here the net flow is inward, so div F(P,) < 0 and P, is a sink. We
) I ) ! o 5

can use the formula for F to confirm this impression. Since F = x*i + y*j, we have

FIGURE 4 div F = 2x + 2y, which is positive when y > —x. So the points above the liney = —x

The vector field F = x?i + y?]

m Exercises

are sources and those below are sinks.

1-4 Verify that the Divergence Theorem is true for the vector field 7. F(x,y,z) = 3xy?i + xe'] + 2°Kk,

F on the region E.

Sisthe surface of the solid bounded by the cylinder
y? + z2=1andtheplanesx = —land x = 2

1.

F(x Y, z) = 3xi + xyj + 2xzk,

E is the cube bounded by the planesx = 0, x =1,y = 0, 8 F(x,y,2) =0+ y)i+ (v +29) + (2 +x3k,
y=1z=0adz=1 Sis the sphere with center the origin and radius 2
2. F(x,y,z) = x%i + xyj + zk, 9. F(x,y,z) = x’sinyi + xcosyj — xzsinyk,
E is the solid bounded by the paraboloid z = 4 — x? — y? Sisthe “fat sphere” x® + y® + =8
and the xy-plane 10, F(xy,2) = zi + yj + 2xk,
3. F(xY,2) =(z,V¥,X), Sisthe surface of the tetrahedron enclosed by the coordinate
Eisthesolid ball x? + y? + z?> < 16 planes and the plane
4 F(x,y,2) = (X% —Y, 2), Xy Y. r_q
Eisthe solid cylinder y? + 22 < 9,0 < x < 2 a b ¢
where a, b, and c are positive numbers
5-15 Use the Divergence Theorem to calculate the surface integral 1. F(x,y,2z) = (cosz + xy?)i + xe %] + (siny + x%2)k,
[[sF - dS; that is, calculate the flux of F across S. Sisthe surface of the solid bounded by the paraboloid
. . . z=x?+y?and theplanez = 4
5 F(x Y, z) = xye'i + xy*z®j — ye'k,
Sis the surface of the box bounded by the coordinate planes 12. F(x, Yy, 2) = x*i — x%2j + 4xy%K,
andtheplanesx = 3,y=2,andz =1 Sisthe surface of the solid bounded by the cylinder
2 2 = =
6. F(x,y,z) = X?yzi + xy%j + xyz?Kk, x?+y*=1andtheplanesz = x + 2andz =0
Sisthe surface of the box enclosed by the planesx = 0, 13. F = |r|r,wherer = xi +yj + zk,

Computer algebra system required

Xx=ay=0y=bz=0andz=c, wherea, b,and c are
positive numbers

Sconsists of the hemisphere z = /1 — x2 — y2 and the disk
x? + y? < 1in the xy-plane

1. Homework Hints available at stewartcal culus.com
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16.9 The Divergence Theorem

1. divF =342+ 2z = 3+ 3z, so
Jff pdivFdV = folfolfol (3z + 3) dz dy dz = £ (notice the triple integral is
three times the volume of the cube plus three times 7).

To compute [, F - dS, on

Slzn:i,F:3i+yj+22k,andffslF~dS:ff513dS:3;
Sg:F:3xi+xj+2xzk,n:jandff52F~dS:ffs2de:%;
Sg:F:3xi+acyj+2:vk,n:kandffSBF-dS:ffSSZa:dS:1;
S4:F:O,ffS4F4dS=O;S5:F:3xi+2xk,n:fjandffSSF~dS:ffSSOdS:0;
Sg:F:3zi+xyj,n:—kandffSGF-dS:ffSGOdS:O.ThusffSF~dS:%.
2.divF=2x4+2+1=3x+1s0
[ff,divEdV = fffE3a:+1dV S22 (3rcos O+ 1) rdzdr do
7f0 r(3rcos +1)(4 —r*) do dr
T4 —7“2)[37“51119—&-0}9 7 dr

—Jo

=27 fo (4r —r®)dr = 2w [2r® — irﬂi

=2n(8—4) =8
On S1: The surface is 2 = 4 — 22 — 32, 2 + 4 < 4, with upward orientation, and F = 22 i + xyj + (4 — 2% — y*) k. Then
Jls, F-dS = [[,[-(2?)(—22) = (2y)(=2y) + (4 — 2® — y*)] dA
=[/ [2;6(332 +y°) +4— (" +y7)] dA = f% f02 (2rcos@-r?+4—7r?)rdrdd

OQW[ Scosf +2r% — 1 4] 20 = (64 cosf+4) df = [& s1n9+49} =87

On Sy: The surface is z = 0 with downward orientation, so F = z?i 4 zy j, n = —k and ffSa F-ndS = ff52 0dS =0.
Thus [f,F-dS = [[, F-dS+ [[, F-dS=8r.

3.divF=0+1+0=1s0 [f[,divFdV = [[[,1dV = V(E) = x4 = 287 S is a sphere of radius 4 centered at
the origin which can be parametrized by r(¢, ) = (4sin ¢ cos6,4sin ¢sinf,4cos @), 0 < ¢ < 7,0 < 6 < 27 (similar to
Example 16.6.10). Then
ry X g = (4cos pcosf,4cos psinf, —4sin @) x (—4sin ¢ sin b, 4sin ¢ cos 0, 0)
= <16 sin? ¢ cos 0, 16 sin? ¢ sin @, 16 cos ¢ sin ¢>
and F(r(¢,0)) = (4cos ¢, 4sin ¢sin b, 4sin ¢ cos #). Thus
F - (ry X rg) = 64 cos ¢sin® ¢ cos O + 64 sin® ¢ sin” O + 64 cos ¢ sin” ¢ cos @ = 128 cos ¢ sin® ¢ cos 0 + 64 sin® ¢ sin® 0

and
J[gF-dS = [[,F-(ry xry)dA= f JoT (128 cos ¢ sin® ¢ cos O + 64 sin® ¢ sin® 0) dp d6

- 027’ [128 sin® ¢ cos 0 + 64 (—% (2 + sin® ¢) cos @) sin® 0] Zig do

027r 26 sin* 0 df = 26 [1 0——511129] = 2y
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4. divF =2z — 1+ 1=2x,s0

///EdideV: // V:zxdz]dAz // 4dA = 4(area of circle) = 4(r - 3°) = 367

y2+22<9 y2+22<9
Let S; be the front of the cylinder (in the plane x = 2), S» the back (in the yz-plane), and Ss the lateral surface of the cylinder.
S is the disk = = 2, y* 4+ 2% < 9. A unit normal vector is n = (1,0,0) and F = (4, —y, z) on S1, 50
[fs, F-dS=[[s F-ndS= [[; 4dS = 4(surface area of S1) = 4(r - 3%) = 36m. Sq is the disk x = 0, y? + 2% < 9.
Here n =(—1,0,0) and F = (0, —y, 2), so ffsz F.dS =ff52 F -ndS = ffsz 0dS = 0.
Ss3 can be parametrized by r(z, 0) = (x,3co0s6,3sin6),0 < z < 2,0 < 6 < 27. Then
r, Xxrg = (1,0,0) x (0, —3sin#, 3 cos ) = (0, —3 cos §, —3 sin ). For the outward (positive) orientation we use
—(rz x rg) and F(r(z,0)) = (2°, —3 cos 0, 3sin 0), so
ffs F.dS = ffD —(ry X 1)) dA = fo " (0 — 9cos® 0 + 9sin’ §) df dx
=9 [2dz [7" cos20d0 = —9(2) [% sin20}(2)7r =
Thus [ F - dS = 36m + 0 + 0 = 367
5. divF = a%(:L'yez) + B%(xygzs) + %(—yez) = ye® + 2xyz® — ye* = 2xy2z3, so by the Divergence Theorem,
[[sF-dS= [[[, divEdV = [} [* [ 2zyz* dzdydz =2 [} xdx [ ydy [} 2°dz
=2[32%; [3v°]; [32'],=2(3) @ (3) = 3
6. divF = g(z yz) + a%(zyzz) + %(xyzz) = 2zyz + 2zyz + 2xyz = 62yz, so by the Divergence Theorem,
[[sF-dS= [[[,divFdV = [ [ [“6ayzdzdyde =6 [ xdz [ ydy [{zdz
= 63213 [30°0) (270 = 6 (3a) (30%) (3¢) = dvne?
7. divF = 3y® + 0 + 32, so using cylindrical coordinates with y = r cos 0, z = rsin 0, x = = we have

[[¢F-dS= [[[,(3y° +32°)dV = f jo j_ (3r% cos® 0 4 312 sin? 0) r dx dr d6

=3[27do [} rPdr [? de=3(2m)(1)(3) =L

8. divF = 322 + 3y® + 322, so by the Divergence Theorem,

J[sF-dS= [[[,3(z* +y> +22)dV = [T [27 [2 3p% - p?singdpdfde =3 [ singde [27do [7 p*dp

=3[—coslj [013" [£p°]; =3(2) (2m) (£) = 2

9. divF = 2zsiny — siny — xsiny = 0, so by the Divergence Theorem, [, F -dS =[[[_0dV = 0.
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o1 Solution for Quiz I



onMexiom Mikodwmi ,, $5FF6

Calculus IITI MTH 203 Fall 2021, 1-1 © copyright Ayman Badawi 2021

Quiz I, MTH 203, Fall 2021

Ayman Badawi

QUESTION 1. Convince me that L; : z =3t + 1,y =t — 2,2 = —4t + 2 (t € R) is perpendicular to L, : x =
2w,y =2w —5,z =2w — 6 (w € R).

® Fust condifon: D P, = O

D=<3,1,-u) wmd ©,=<2,2,27

DieDy = K30 ,-0y- L2227
= 3(D) (D) -\2)= 0

@ Second condition- L, and Ly wersecr

Check W& L= x wmlble
Y L\:Ub'\vx Y

z W Ly=72 "N g -

X% It =2w —p T = \
Yys  k-2=z2w-5 —» w=2

5
Z: =W+l = 2w-6

9 = — ‘/
eq‘ua‘r\ow Por z & sadistied by & ond W -
Boh conditions oy mek, Haerefore



QUESTION 2. Istheline L; : x =3t+ 1,y =t —2,2 = -4t 4+ 2 (t € R) parallel to L, : © = 6w — 5,y =
2w — 4,z = —8w + 11 (w € R)? EXPLAIN WHY YES or WHY NO.

@ Firsk condibon- b =cPg
Di=<3,\,-0Y and P, =<62,-%)

3=be —» C=Y2 ¢=VY2
\=2C— ¢ = Va2 sofiskeb
o\ 0§ Yhemm

-4=-3c— c= Vo \/

@ Second condikion - L. does nok wrersecy L’L-
Lets see 1§ the powny (\,—2,2_5,'\,)\/\.\(_\/\
\es on L\, d0es no¥ \\e ow L-'L'

nof soYished

bvb e
some W .

Lyw V=2 bw-S5 —%» W=\
2= IWw-Y\ —p w=\
9 =-wx\\—p w= /g
Snce The po‘\V\\' (\,-2,2) does not lwe
ow Lo, Wwe con confirm thokr theoy ae
noy e saome line .

Boll comdifions ore wek, yaorelore

Lo L,
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Calculus IITI MTH 203 Fall 2021, 1-1 © copyright Ayman Badawi 2021

Quiz IT, MTH 203 , Fall 2021

Ayman Badawi

QUESTION 1. Does the line L : . = —t+2,y = 2t + 6,z = 3t — 2(t € R) intersect the plane P : x +y + 2z = 25.
If yes, then find the point of intersection.

QUESTION 2. Can we draw the vector v =< 2, —4, —3 > inside the plane P : x + y — 2z = 12 ? explain

QUESTION 3. Does the plane P; : 4+ 2y + z = 5 intersect the plane P, : —x — y + 32 = —27 If yes, the find the
parametric equations of line of intersection.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
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Calculus IITI MTH 203 Fall 2021, 1-1 © copyright Ayman Badawi 2021

Quiz IIT, MTH 203 , Fall 2021

Ayman Badawi

QUESTION 1. Find all critical points of the function f(z, y) = yx? — 222 — 4. Then classify each critical point as
local Max/Min or Saddle or neither.

Solution:
F x=2xy-4x=0, 2x(y-2)=0, y=2 or x=0 (1)

F y=xA2-2y=0. y=x"2/2.(2)

assume x = 0, then by (Eq (2), we have y=0, (0, 0)

In eq(2) we set y=2,solveforx. 2 = xA2/2, 4=x"2, x=2,-2. Hence we get (2,2), (-2,2)
Critical points: (0, 0), (2,2) and (-2, 2)

fxx=2y-4,fyy=-2,fxy=2x

(0,0): fxx(0,0) = -4, fyy(0,0) = -2, fxy(0, 0) = 0.
D = fxx(0, 0)fyy(0,0) - fxy(0,0)A2 = 8, f xx(0, 0) <0, we have local max at (0, 0)

(2,2): xx(2,2)= 0,fyy(2,2) = -2,fxy(2,2) =4. D = -16 <0 , saddle point at (2, 2)
(-2,2): fxx(-2,2) =0, fyy(-2, 2) = -2, fxy(-2,2) = -4. D =-16 <0, saddle point at (-2,
2)

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
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0.4 Solution for Quiz IV



Mexiovn Mo LT+

QUESTION 1. Let f(z,y) = ye@% + z,/y + 2.
(i) Leta = f(4,1). Find a
(ii) Find f; and f,.
(iii) Let P be the tangent plane to f(z,y) at the point (4, 1,a). Let N be a vector that is perpendicular to P. Find N.
(iv) Find the equation of P, where P is as in (iii).

(v) Use the concept of the tangent plane to approximate f(4.2,0.8)

\\ fu\) = Q *L\+2(L\\— \% \/-2'

+
%
1)
<
(b
_|.-
=
*
N

T_—'o(ua‘novx ot P:
W% - 3 (y-0) =(Z\3) = O



D) P\eowoq/\%e Yo moke =z e sub\)‘ec\-
z = HJx-u)+ 3(y-) +\2 \/
Lix) = Wix=0) + 3(y-\) + 13
L(n.2,0.9) = 442 -W)+3(0-8-\) ¥13

= 12.9. ~ §(4.2,0.9). ’L



QUESTION 2. A solid object has a a triangular base that is bounded by y = = and y = —x (see PICTURE). Note

that —2 < 2 < 2 and 0 < y < 2. The height is determined by the function f(z,y) = eV4=¥*_ Find the volume of
such object.

y=-% y=x A solid obyect has a triangular base m
the xy-plane as in picture. Note A =

9 (-2,2),B=(2,2),and C=(0,0).C,
B lie on the line y = x, C and A lie on

y=-X.
z
OsS WS 2
0 < XKW
W=2 x=W o~
\]: 2 J j e N-y dx A&\S \/
N=0 x=0

Fisk evoluale jnner 'm%to)w‘o\\'-

=Y
G-y G-ur
S N L ve \5\
K=Q

A=Y

l
cs
(D

X=0
Then  evaluote ouker ZV\\'QC:)VCL\f

S\ﬁzi e_\‘ ‘\-W'LA use  subshirumown
=0 3 A w=4-4* du= -236«3

(W S
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Mex;a-W\ N\kac&\m(

33336

QUESTION 1. See the below picture. A force F(z,y) =< —y,xz > is acting on a particle in order to move it from
the point A to the point B along the ellipse 2> + 4y*> = 16. Find the work done by the force F(x,y). [Hint: you do

not need to find A, B].

L 4

— 7

3w
2

Paromelvic Ea\ua‘riov\s .

X = L\COS(_’(\ ‘g 3,1-_‘- <t S 2+t
‘()2 2 s () z

dX = ""\SfV\‘b cl)C'
d% = 2co0s% QX

(i‘(‘ = <Ax | A\5>
= <—'3\s§n\7c§‘c,2cos’cd¥>

217

2

Work = g {25, Deosk P o <-Usinkadk Zcostdb>

3u
1



2w

= S (Psm®t d% + B oot dY)
3

2“:; 2w
=§3;et - %\E i - 12w
2

= Qw

——
————

QUESTION 2. The height of a curtain is determine by f(z,y) = ¢** + 5y defined over the curve y = €%, 0 < x <
In(5). Find the surface area of the curtain.

Surfoce Aveo = l‘\@(\()klr x Arc L(’,ms‘ﬂz»
dy _ %

Sx
\InS
S [ ense [T o o
)
InS
= g be™ [ e2* dx
o)
Use 5ubs’ﬂ'\'\k¥\0V\: W= \%62* du= 2e**4x

LPC‘)(: \

Zezxdm




|

fe;f(ﬁ : 2?( M

26 2¢
- 3/7_
= Ssmam _ 9a

2 2

_ o0 — 1 = 294492 .

QUESTION 3. Evaluate the integral f C( 1+ 2y) dy , where the curve C'is y = ¢*,0 < < 1

Rewyi Yo Q\fe)(s\.)\'\ml"\c:) WA RrMS QQ K-
\‘j:exl > d’\j: erxz&)(

\
1 2
S (\+ 28 ) 2xe” &

9
YR

Use substubion: w= I+ 26*1
= Uxe™ dx

-\
Ly dx = L\Xﬁxzéw




| +2e

= L h+2e) = ’l\Z\(%V = 2M0%3 ...
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Quiz VI, MTH 203, Fall 2021

Ayman Badawi

SHOW THE WORK, SUBMIT by 2:35pm

QUESTION 1. See the below picture. A force F/(x,y) =< ye¥® — 2z, xe¥® + 4y> > is acting on a particle in order
to move it from the point A = (—2,0) to the point ¢ = (0, —4) along the curve C that consists of C; part of the circle
22+ y2 = 4, C, the line segment between B and ¢, C5 the line segment between ¢ and d, and Cy the line segment
between d and e. Find the work done by the force F(z,y).

Solution: f, = ye® — 2z, hence f,, = e + xye™. f, = ze®™ + 443, thus fyae = €Y + zye®™. Hence
fzy = fy= and therefore F' is conservative. So, the line integral does not depend on the path. So the answer is
K (terminal point) — K (initial point), where K, = f, and K, = f,. To find K (z,y). We do the following (as

in class):
/fgudm:/yexy—Zmdx:e”y—xz

/fy dy:/f”ew”+4y3 dy = ™ +y'

Now K(x, y) = all terms of [ fz dz + thetermsin [ f, dy thatare MISSING in [ f, dz
Hence K (z,7) = ¥ — 22 + y*.
Thus the work = [, F.dr = K(0,—4) — K(—2,0) = ¢” + 0+ 256 — (" — 4 4+ 0) = 260

c=(3,3)

ciz
B = (0, 2)

A =(-2,0)
d=(4,-1)

e = (0, -4)

QUESTION 2. See the below picture. A force F(z,y) =< —2y, %x\/yz + 9 > is acting on a particle in order to
move it from the point A = (0.0) then back to the same point A along the curve C' that consists of Cy part of the the
line y = 0.5z between A and B, C, part of the line y = 4 between B and C, and C part of the y-axis between C' and
A. Use Green’s Theorem to find the work done by the force F'(x,y). [Hint: Is dxdy or dydx easier?]

A

Solution: By staring, [ [ — — — dxdy is easier. OK, we use Green’s Theorem:

fo = 29,80 foy = 2. fy = 3:zzx/y +9,80 fy = \/y + 9. Since C'is closed simple arc, Green’theorem
says [ Fdr = [, Fdr+ [, Fdr+ [, Fdr = [""} f“” Fow — fay dady.

/ / \/yT 9 + 2dxdy

mzyzx/y +9+2dx = nyz /y +9 da:—i—f OyZd:r— srv/y2+9 —|—25r|; gy:%”\/yz—i—9+4y
N"nyo 41/\/:‘/ +9 +4ydy— y() 4yv ’+9 —|—f704ydy

For f;’:; %y\/ 2 1+ 9 dy we use substitution



2 Ayman Badawi

[ST0Y

u=25 _
u=9

Let u = y*> 4+ 9. Then du = 2ydu and v is between 9 and 25. Hence we have [ > 2003 du
5(125—27) = 32

Also, fy 4y dy = 24? = = 32.

Thus the answer is 22 + 32 2024288 _ 680

Ol

QUESTION 3. Find the surface area of the part of f(z,y) = 3 f + 35
of the xy-plane bounded by z% + y*> < 4 and 2> + > > 1, see plcture

deﬁned over the region in the first quadrant

Solution: The region is between the two circles (as in the picture), so POLAR is recommended. By staring
at the region, we realize that 1 <» <2and 0 < 0 < 7/2 Let f(z,y) = 2z = ’

Yy
9 2 2f f
Surface Area / 1 —|— f2 —|— f2 ’I“drde

Now we must write , /1 + f;c + fZ interms of r and ¢ (since the integration is in terms of drdf)

Thus \/1+ f2+ f2 = \/1+0.522 + 0.5y> = /1 +0.5(22 + y2) = V1 + 0.5 (note that every point (z,)
between the two circles satisfies 2> + y =72, where 1 <r <?2)

Thus the surface area = [} /> [7~ \/m rdrdo.

For f:::lz 1+ 0.5r2 rdrd we use substltutlon. Let u = 1 + 0.57%. Hence du = rdr and u is between 1.5 and
3. Thus [*>, w0 du = 2u}[2=3 = 2(315 — 1.515)

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com



164 TABLE OF CONTENTS

017 Solution for Exam I



Midlexon L Mexiom Mkodwn:
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He\%\'\k = 264 _ 36’
Ax" AX 44\

v
\ R

SA= [ 28 . Iy (302 dx

A2+ |

0

J\zexﬂuqu\ Ay

42+ |
0

_ 36% dyx
4%\

Q

W= C\x"\—\q\ du = %6343&4
dx=_1_ dan

X=Q&>\J\ :\ 26%>







Querrion 2 ¢

Frst evaluade inner ivdegrol (du)

P*\%*W% ﬁ»«w\\"ﬂm

0
* 3
= [Zx(mc\) /"'J _[ 2X }
0 3 2
2% (x+\)"2_ 9y
3

3
= x(w¥\V)*
3/2




Now evoluate owrr terval (dx)

S\<2x ey - 2¥> (PN

0 3

\ 3 \
= S 2x () ¢ ‘S =4
=73 2

Q

— S\ 2% (’(*\)3/’2& * —

.3 \,\
=§\2X<"_“"3§A>c—-\ C\)\

a—

Q




“3 'QXX =-2 IF‘M = 2'3 ¥)Q\5== yA

Tor (2.5,1) ¢
7
b = S‘:x)( (%"51\3 o g\a\s (%°S,\\ — %*3 (gglxﬁfx
= ”2"7—(\\ —22_-; -9

Swmee D <O, (2%, s a seddle
poinY-. \/g

for (-0.5, -3) *
P
b = 4‘:)()( ("05,-33 . S;-\\Ts ('0"3!—3\ — E\‘S (_05’__33’X

= e (2 92> _
= -202(DH-2"=%
Swce b> 0, ond £xx=“2<0, -We
point (-05,~>) is & Vacal Mmasximum
with o value of ‘\5.9.‘5 .‘

T

F(-05,-3) = 5(-0 ) - (- > 2(-05)(-3)
—(~a5) "~ _‘q-J(—‘s)"'




Queshionn L\«
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fe= 2% +12=0 —V x = -6
£‘3= “lyrb=0 —» Y=13%

Critica) po\vﬁ w (-6,3), however,
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'\V\s;de, e ve,(ov\, \/
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S‘:(\M‘J)) = X\2x —}51'—\— (7\3

= v x \L % — (25——)(7') + 6\]2‘5—7(2
— YT A 12% =95 XA bJ2S-%2

%/ = 2”47—* \'ZX—‘Zc?%‘J\‘SZB-xZ



Queshion D
N, =<2,.4,57 Ng=<b,a, o)
\F 0 IWP,, than N W Ng .
N, = w N,

2 = (;y\/\. — W\:‘/g
h=wmo N=lio — | =12
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c £+ 19
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Quesrion 6
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-2 -9 -\
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N %

Pt (~2%-%By = 2)x2

3=
x= -3-\(® _ _qg /

L\
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\3—_- e+ g t ¢ R

‘b



Queshion F:
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D ” & 0\\67’-\— 2% = 99

no2 Az L _-=
29 25\5 25

\ x"'a\.‘_\sz'x_ LD I
29/4 25/9 25

From s Lorm we can see Me eO\UA\'\ovx
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2 2 2
X, Bz
b‘L y

/Z/ 0 “ c \
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1)

IF s an eNipgoid lcause e coefficients
o¥ %% W z* ddfer, so T won't be
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-

.\;) MC;\’\'\Q)(, x’L«—\g'L;Ot S O c,\t)\‘w\w OQ’
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1) Local wox weans i is o criNea)
Yo W .
So Fx(3,-5)=0 and Q\ﬁ(%,—g\:o

N = <Q\O)"W'
N\‘: —PS\—PE = <X"51“5'\'91 6—'Z—>

N‘N\:Q L

TOO/\O\@/\\’ V\owne =



W)

D) £om) = 30) (W) Y ()= 3] o (Y (W)
a=\%5 N\_—"

2) Fx = 2y +2x ~ gleﬁ

fy= By -Ly=ax’

gx(\n'-\\= 26 F\\'} aw) = 2.F%

N = < 4w, Fy 0M), -1
N=<26,2.35, -\

M= PR = <%=\, y-1, Z-157
N:M = Q

TOM%QM\‘ Plare -
26 (x-V) + 35 (W-1) ~ (z-\5) = O

\/



2) P\BC\X‘(OM%Q Yo ™halke z /e
St*b\')ec\—-

z= L(x(v)\ = 20(x-\) .‘-PE)(\))—L\) 1%

)/(0‘%;\’\"0\\ = 26(0.% "\\ +%-+5(L\.0\—-\»\3 + 15

= q.%%:ts\j\vy
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0.2.1 QlliZ I



Name ,ID

Calculus IITI MTH 203 Fall 2021, 1-1 © copyright Ayman Badawi 2021

Quiz I, MTH 203, Fall 2021

Ayman Badawi

QUESTION 1. Convince me that L} : z =3t + 1,y =t — 2,2 = —4t + 2 (t € R) is perpendicular to L, : x =
2w,y =2w—5,z =2w — 6 (w € R).

QUESTION 2.Istheline Ly : « =3t+ 1,y =t—2,2 = —4t+ 2 (t € R) parallel to L, : x = 6w — 5,y =
2w—4,z = 8w+ 11 (w € R)? EXPLAIN WHY YES or WHY NO.
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0.2.2 QlliZ II



Name ,ID

Calculus IITI MTH 203 Fall 2021, 1-1 © copyright Ayman Badawi 2021

Quiz IT, MTH 203 , Fall 2021

Ayman Badawi

QUESTION 1. Does the line L : . = —t+2,y = 2t + 6,z = 3t — 2(t € R) intersect the plane P : x +y + 2z = 25.
If yes, then find the point of intersection.

QUESTION 2. Can we draw the vector v =< 2, —4, —3 > inside the plane P : x + y — 2z = 12 ? explain

QUESTION 3. Does the plane P; : 4+ 2y + z = 5 intersect the plane P, : —x — y + 32 = —27 If yes, the find the
parametric equations of line of intersection.

Faculty information
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0.2.3 QlliZ 111



Name ,ID

Calculus IITI MTH 203 Fall 2021, 1-1 © copyright Ayman Badawi 2021

Quiz IIT, MTH 203 , Fall 2021

Ayman Badawi

QUESTION 1. Find all critical points of the function f(z,y) = yz*> — 22> — 3. Then classify each critical point as
local Max/Min or Saddle or neither.

Faculty information
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0.2.4 QlliZ IV



Name ,ID

Calculus IITI MTH 203 Fall 2021, 1-1 © copyright Ayman Badawi 2021

Quiz IV , MTH 203, Fall 2021

Ayman Badawi

QUESTION 1. Let f(z,y) = yel** + 2. /y + 2z.

(i) Leta = f(4,1). Find a

(ii) Find f, and f,,.
(iii) Let P be the tangent plane to f(z,y) at the point (4, 1,a). Let N be a vector that is perpendicular to P. Find N.
(iv) Find the equation of P, where P is as in (iii).

(v) Use the concept of the tangent plane to approximate f(4.2,0.8)

QUESTION 2. A solid object has a a triangular base that is bounded by y = « and y = —x (see PICTURE). Note

that —2 < 2 < 2 and 0 < y < 2. The height is determined by the function f(x,y) = eV4=¥’_ Find the volume of
such object.

A solid object has a triangular base m

the xy-plane as m picture. Note A =
4 B (-2,2),B=(2,2),and C=(0,0).C,

B lie on the lme y =x, C and A lie on

)
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0.2.5 QlliZ V



Name ,ID

Calculus IITI MTH 203 Fall 2021, 1-1 © copyright Ayman Badawi 2021

Quiz V, MTH 203, Fall 2021

Ayman Badawi

SHOW THE WORK, SUBMIT by 2:35pm

QUESTION 1. See the below picture. A force F(z,y) =< —y,x > is acting on a particle in order to move it from
the point A to the point B along the ellipse 2 + 4y> = 16. Find the work done by the force F(z,y). [Hint: you do
not need to find A, B].

)

QUESTION 2. The height of a curtain is determine by f(z,y) = €>* + 5y? defined over the curve y = ¢, 0 < z <
In(5). Find the surface area of the curtain.

QUESTION 3. Evaluate the integral 1 —|_ 2 d , where the curve C'is y = e””z, 0<z<1
C
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0.2.6 QlliZ VI



Name ,ID

Calculus IITI MTH 203 Fall 2021, 1-1 © copyright Ayman Badawi 2021

Quiz VI, MTH 203, Fall 2021

Ayman Badawi

SHOW THE WORK, SUBMIT by 2:35pm

QUESTION 1. See the below picture. A force F/(x,y) =< ye¥® — 2z, xe¥® + 4y> > is acting on a particle in order
to move it from the point A = (—2,0) to the point ¢ = (0, —4) along the curve C that consists of C; part of the circle
22+ y2 = 4, C, the line segment between B and ¢, C5 the line segment between ¢ and d, and Cy the line segment
between d and e. Find the work done by the force F(z,y).

c=(3,3)

A=(-2,0)
d=(4,-1)

e =(0, -4)

QUESTION 2. See the below picture. A force F(z,y) =< —2y, 2x/y? +9 > is acting on a particle in order to
move it from the point A = (0.0) then back to the same point A along the curve C' that consists of C, part of the the
line y = 0.5z between A and B, () part of the line y = 4 between B and C, and Cj part of the y-axis between C and
A. Use Green’s Theorem to find the work done by the force F'(x,y). [Hint: Is dxdy or dydx easier?]

QUESTION 3. Find the surface area of the part of f(z,y) = %
of the xy-plane bounded by z% + y* < 4 and 2> + y* > 1, see picture.

+ % defined over the region in the first quadrant

Faculty information
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0.3.1 Exam ||



Name ,ID

Calculus IITI MTH 203 Fall 2021, 1-1 © copyright Ayman Badawi 2021

Exam I, MTH 203, Fall 2021

Ayman Badawi

(IMPORTANT: STOP WORKING at 7:40 pm, Go to assessment, you will find a folder SUBMIT EXAM
ONE, Submit your solution as a PDF file, Max by 7:55 pm)

Score = )

QUESTION 1. (6 points) Given Z = f(z,y) = 5’ is defined over the arc C': y = 23, where 0 < 2 < 1. Find

the surface area of the curtain that is determined by f(x,y) and the ARC C. [Hint: Note that Z = f(z,y) > 0].
Show all steps that you used in evaluating the integral. You may use a calculator at the end (i.e., last step ONLY, in
order to come up with the answer)

QUESTION 2. (6 points, SHOW THE WORK) Given Z = f(x,y) = z+/y + 1 is defined over the region bounded
by the positive x-axis, y = z, and 0 < z < 1. Find the volume of such object. [Hint: Note that Z = f(z,y) > 0].
Show all steps that you used in evaluating the integral. You may use a calculator at the end (i.e., last step ONLY, in
order to come up with the answer)

QUESTION 3. (10 points, SHOW THE WORK) Given Z = f(x,y) = 5z — 8y + 2xy — 2° + %y3
(i) Find all critical points of f(z,y).

(i1) Classify each critical point as local max., local min., saddle point, or neither.

QUESTION 4. (8 points, SHOW THE WORK) Find the absolute maximum and the absolute minimum of f(z,y) =
2?2 + 122 — y* + 6 over the bounded region z> + > < 25. [Hint: the region consists of all points inside the circle
22 4 y* = 25 including the points on the circle 2> + y? = 25].

QUESTION 5. (6 points, SHOW THE WORK) Given P, : 2x + 4y + 5z = 6 and P, : 62 4 ay + bz = ¢ such that
Py is parallel to P;. Find all possible values of a, b, c.

QUESTION 6. (8 points, SHOW THE WORK) The plane 4x+11y—5z = —3 intersects the plane —2z—5y—2z = 3
in a line L. Find a parametric equations of L.

QUESTION 7. (i) (2 points) Is 422 + 9y + 22 = 25 a sphere or ellipsoid or a cone? Explain briefly

(ii) (2 points) Is 2> + y*> = 9 a cylinder of finite height? or a sphere of infinite radius? or neither? explain briefly

(iii) (2 points) Given (3,—5,6) is a local maximal point of f(z,y). Find the equation of the tangent plane at
(3,—5,6)[ Hint: pause, think! trust me it is not difficult]

(iv) Let f(z,y) = 3zy + 2? — \/y + 2°y. Leta = f(1,4).
(1) Find a. (1 point)
(2) (5 points) Find the equation of the tangent plane to f(z,y) at (1,4, a).

(3)(2 points) Use the concept of the tangent plane to approximate f(0.8,4.01)

QUESTION 8. (4 points, SHOW THE WORK) Use the concept of partial order to find dy/dx, where y*e>* +
zsin(3y) + 22 + xy® + 10 =0

Faculty information
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032 Exam 11



Name ,ID

Calculus IIT MTH 203 Fall 2021, 1-2 © copyright Ayman Badawi 2021

Exam II , MTH 203, Fall 2021

Ayman Badawi

(IMPORTANT: STOP WORKING at 10:40 pm, Go to assessment, you will find a folder SUBMIT EXAM
TWO, Submit your solution as a PDF file,by 10:55 pm, as at most. I will not receive solutions by EMAIL)

Score = e T a—

QUESTION 1. (6 points, SHOW THE WORK) Given F(z,y,2) =< 'y, 32,2y > defined over the upper-half
of the sphere S : 22 + 3> + 2> = 9 (i.e., 0 < z < 3). Assume that S is oriented upward. Use Stoke’s Theorem to
evaluate | | s Curl(F) -dS . [Hint: Find the (familiar) curve C that is surrounding the upper half sphere!]

z

Pink is the CURVE C
Black is the upper half sphere

QUESTION 2. (6 points, SHOW THE WORK) Given F(z,y,z) =< *713:2, yzx, zy > defined over the portion of
the plane S : z = x + 2y oriented upward that is bounded by the triangular curve C' positively oriented (i.e., ccw)
with vertices (2,0,2),(3,1,5),(1,1,3). Use Stoke’s Theorem to find [, F' - dr. [hint: in order to find the region D
in the xy-plane, project the vertices of the triangle over the xy-plane (i.e., let z = 0), then stare at the region D inside
the triangle]

QUESTION 3. (6 points, SHOW THE WORK) The density function of an object is given by d(x,y) = 1+ z + y.
The surface of th object has the shape that is determined by z = %x% + %y% defined over the region D (see picture
below) in the first quadrant of the xy-plane where 22 + y? < 4 and 2> + 3 > 1. Find the mass of such object. [Hint:
Note that the mass is [ [;, d(z, y)dS]

QUESTION 4. (6 points, SHOW THE WORK) See the below picture. A force

F(z,y) =< (y73)\/x(y73)+1, x\/x(y73)+1>

is acting on a particle in order to move it from the point A = (3,4) to the point B = (0,3 + ¢~*) along the curve
C :y =3+ e*=3) (clockwise). Find the work done by the force F(z,v).




2 Ayman Badawi

QUESTION 5. (6 points, SHOW THE WORK) See the below picture. A force F(x,y) =< x>+z+1, %x\ Jy> +1>
is acting on a particle in order to move it from the point A = (0, 1) then back to the point A along the curve C' (counter
clockwise) that consists of C|: part of the line y = 1 from A to B = (1,1), Cy: part of the curve y = 2> from B to
C = (2,4), Cs: part of y = 4 from C to D = (0,4), and Cy: part of the y-axis from D to A. Use Green’s Theorem
to Find the work done by the force F'(x,y).

\ {
'HI D 4 0.-___}‘ (‘
|illl
\ I."III
\ 5 /
\48&—sB
s S

QUESTION 6. (6 points, SHOW THE WORK) Let F =< 2% + 1, 22+ 1, 22y + 1 >
(i) Find Curl(F). Is F' conservative?

(ii) Assume that the given F is a force that is acting on a particle in order to move it from A = (1, 1, 1) to the point
B = (4,3,2) along the curve 7(t) =< t, 2y/t — 1, v/t >. Find the work done by F. See the picture of r(t)
below
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Name ,ID

Calculus IIT MTH 203 Fall 2021, 1-2 © copyright Ayman Badawi 2021

Final Exam , MTH 203, Fall 2021

Ayman Badawi

(IMPORTANT: STOP WORKING at 4:00 pm, Go to assessment, you will find a folder SUBMIT Final
Exam, Submit your solution as a PDF file,by 04:12 pm, as at most. I will not receive solutions by EMAIL)

Score = 5

QUESTION 1. (6 points, SHOW THE WORK) Given F(z,y, z) =< y*z, 2%y, ;z° > defined over the solid upper-
half of the sphere S : %+ y2 + 22 =4 (e, 0 < z < 2). Assume that S is oriented upward and closed from the
bottom by the plane z = 0. Use the Divergence’s Theorem to find the flux through the given solid upper half sphere

(e. [ [¢F(z,y,2)-dS).

QUESTION 2. (6 points, SHOW THE WORK)

. 2e(22=5y) _
(i) Show that LZM(xjy)_)(iz) € 2x—5y J does not exist.

3y—2z —1

(ii) Given Lim(x,y)_)(473) 20—3y+1 exists. What is it?

QUESTION 3. (6 points, SHOW THE WORK) The density function of an object is given by d(z,y) = = +y. The
surface of th object is determined by z = 8 — 22> — 2y above the xy-plane (see picture). Find the mass of such
object. [Hint: Note that the mass is [ [}, d(z,y) dS]

QUESTION 4. (6 points, SHOW THE WORK) See the below picture. A force F(z,y) =< e 1) ze’+3v) > js
acting on a particle in order to move it from the point A = (0, 0) then back to the point A along the curve C' (counter
clockwise) that consists of C;: part of the x-axis from A to B = (1,0), Cs: part of the curve y = v/z — 1 from B to
C = (5,2), Cs: part of y = 2 from C' to D = (0,2), and Cj: part of the y-axis from D to A. Use Green’s Theorem
to Find the work done by the force F'(x,y).




2 Ayman Badawi

QUESTION 5. (6 points, SHOW THE WORK) Given f(z,y) = /22 + y2 + 4.
(i) Find D, (1,2), where u is the unit vector in the direction of < 3,4 >.

(ii) Find the maximum rate of change of f(z,y) at (1,2) and the direction in which the maximum rate of change
occurs.

QUESTION 6. (6 points, SHOW THE WORK) (1) Given z > 0 and 22 + ze(*~%) — 6 = 0, z(t, s) = 3t> 4+ 2s and
y(t,s) =2t + 3s. Find 92/t whent = s = 1.

(2) Given the curve r(t) =< V/2t, 1> +t, sin(rt) >. Find the equation of the tangent line to the curve r(t) at
(2,6,0).

QUESTION 7. (6 points, SHOW THE WORK) Let F' =< e®=2%) 4y 42+ 1, 2y+a+1, 222 243 >
(i) Find Curl(F). Is F' conservative?

(ii) Assume that the given F is a force that is acting on a particle in order to move it from A = (0,1,0) to the
point D = (6,8,3) along the curve C (see picture) that consists of C: part of r(t) =< 3¢,t> + 1,/t > from
Ato B = (3,2,1), Cy: part of the curve r(t) =< 3 +¢,2t +2,#> + 1 > from B to C = (4,4,2), C5: part of
r(t) =< 2t* + 4,4t + 4,t> + 2 > from C to D = (6,8, 3). Find the work done by the force F(x,y) (i.e., find
Jo F(z,y, z) - dr).

QUESTION 8. (8 points, SHOW THE WORK)

() Let f(x,y) = 2% + 4> + 2y — 3z — 3y + 20. Find all critical points of f(z,y) and classify each point as local
min, local max, or saddle point

(ii) Find three positive real numbers z, y, z (i.e., z,y, z > 0) such that zyz is maximum and = + y + 2% = 25. [hint:
use Lagrange]
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