MTH203-Course Portfolio-Spring 2021

Ayman Badawi

Table of contents

02 QUIZZES 192
0_{021} QuizI 193
0.2.2 Quiz II 195
0.2.3 Quiz III 197
0.2.4 Quiz IV 199
0.2.5 Quiz V 201
026 Quiz VI 203
${ }_{03}$ Exams 205
0.3.1 Exam I 206
0.3.2 Exam 208
0.3.3 Final Exam 211

8. If the vectors in the figure satisfy $|\mathbf{u}|=|\mathbf{v}|=1$ and $\mathbf{u}+\mathbf{v}+\mathbf{w}=\mathbf{0}$, what is $|\mathbf{w}|$?

9-14 Find a vector a with representation given by the directed line segment $\overrightarrow{A B}$. Draw $\overrightarrow{A B}$ and the equivalent representation starting at the origin.
9. $A(-1,1), \quad B(3,2)$
10. $A(-4,-1), \quad B(1,2)$
11. $A(-1,3), \quad B(2,2)$
12. $A(2,1), \quad B(0,6)$
13. $A(0,3,1), \quad B(2,3,-1)$
14. $A(4,0,-2), \quad B(4,2,1)$

15-18 Find the sum of the given vectors and illustrate geometrically.
15. $\langle-1,4\rangle,\langle 6,-2\rangle$
16. $\langle 3,-1\rangle,\langle-1,5\rangle$
17. $\langle 3,0,1\rangle,\langle 0,8,0\rangle$
18. $\langle 1,3,-2\rangle,\langle 0,0,6\rangle$

19-22 Find $\mathbf{a}+\mathbf{b}, 2 \mathbf{a}+3 \mathbf{b},|\mathbf{a}|$, and $|\mathbf{a}-\mathbf{b}|$.
19. $\mathbf{a}=\langle 5,-12\rangle, \quad \mathbf{b}=\langle-3,-6\rangle$
20. $\mathbf{a}=4 \mathbf{i}+\mathbf{j}, \quad \mathbf{b}=\mathbf{i}-2 \mathbf{j}$
21. $\mathbf{a}=\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}, \quad \mathbf{b}=-2 \mathbf{i}-\mathbf{j}+5 \mathbf{k}$
22. $\mathbf{a}=2 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k}, \quad \mathbf{b}=2 \mathbf{j}-\mathbf{k}$

23-25 Find a unit vector that has the same direction as the given vector.
23. $-3 \mathbf{i}+7 \mathbf{j}$
24. $\langle-4,2,4\rangle$
25. $8 \mathbf{i}-\mathbf{j}+4 \mathbf{k}$
26. Find a vector that has the same direction as $\langle-2,4,2\rangle$ but has length 6.

27-28 What is the angle between the given vector and the positive direction of the x-axis?
27. $\mathbf{i}+\sqrt{3} \mathbf{j}$
28. $8 \mathbf{i}+6 \mathbf{j}$
29. If \mathbf{v} lies in the first quadrant and makes an angle $\pi / 3$ with the positive x-axis and $|\mathbf{v}|=4$, find \mathbf{v} in component form.
30. If a child pulls a sled through the snow on a level path with a force of 50 N exerted at an angle of 38° above the horizontal, find the horizontal and vertical components of the force.
31. A quarterback throws a football with angle of elevation 40° and speed $60 \mathrm{ft} / \mathrm{s}$. Find the horizontal and vertical components of the velocity vector.

32-33 Find the magnitude of the resultant force and the angle it makes with the positive x-axis.
32.

33.

34. The magnitude of a velocity vector is called speed. Suppose that a wind is blowing from the direction $\mathrm{N} 45^{\circ} \mathrm{W}$ at a speed of $50 \mathrm{~km} / \mathrm{h}$. (This means that the direction from which the wind blows is 45° west of the northerly direction.) A pilot is steering a plane in the direction $\mathrm{N} 60^{\circ} \mathrm{E}$ at an airspeed (speed in still air) of $250 \mathrm{~km} / \mathrm{h}$. The true course, or track, of the plane is the direction of the resultant of the velocity vectors of the plane and the wind. The ground speed of the plane is the magnitude of the resultant. Find the true course and the ground speed of the plane.
35. A woman walks due west on the deck of a ship at $3 \mathrm{mi} / \mathrm{h}$. The ship is moving north at a speed of $22 \mathrm{mi} / \mathrm{h}$. Find the speed and direction of the woman relative to the surface of the water.
36. Ropes 3 m and 5 m in length are fastened to a holiday decoration that is suspended over a town square. The decoration has a mass of 5 kg . The ropes, fastened at different heights, make angles of 52° and 40° with the horizontal. Find the tension in each wire and the magnitude of each tension.

37. A clothesline is tied between two poles, 8 m apart. The line is quite taut and has negligible sag. When a wet shirt with a mass of 0.8 kg is hung at the middle of the line, the midpoint is pulled down 8 cm . Find the tension in each half of the clothesline.
38. The tension \mathbf{T} at each end of the chain has magnitude 25 N (see the figure). What is the weight of the chain?

39. A boatman wants to cross a canal that is 3 km wide and wants to land at a point 2 km upstream from his starting point. The current in the canal flows at $3.5 \mathrm{~km} / \mathrm{h}$ and the speed of his boat is $13 \mathrm{~km} / \mathrm{h}$.
(a) In what direction should he steer?
(b) How long will the trip take?
20. $\mathbf{a}+\mathbf{b}=(4 \mathbf{i}+\mathbf{j})+(\mathbf{i}-2 \mathbf{j})=5 \mathbf{i}-\mathbf{j}$
$2 \mathbf{a}+3 \mathbf{b}=2(4 \mathbf{i}+\mathbf{j})+3(\mathbf{i}-2 \mathbf{j})=8 \mathbf{i}+2 \mathbf{j}+3 \mathbf{i}-6 \mathbf{j}=11 \mathbf{i}-4 \mathbf{j}$
$|\mathbf{a}|=\sqrt{4^{2}+1^{2}}=\sqrt{17}$
$|\mathbf{a}-\mathbf{b}|=|(4 \mathbf{i}+\mathbf{j})-(\mathbf{i}-2 \mathbf{j})|=|3 \mathbf{i}+3 \mathbf{j}|=\sqrt{3^{2}+3^{2}}=\sqrt{18}=3 \sqrt{2}$
21. $\mathbf{a}+\mathbf{b}=(\mathbf{i}+2 \mathbf{j}-3 \mathbf{k})+(-2 \mathbf{i}-\mathbf{j}+5 \mathbf{k})=-\mathbf{i}+\mathbf{j}+2 \mathbf{k}$
$2 \mathbf{a}+3 \mathbf{b}=2(\mathbf{i}+2 \mathbf{j}-3 \mathbf{k})+3(-2 \mathbf{i}-\mathbf{j}+5 \mathbf{k})=2 \mathbf{i}+4 \mathbf{j}-6 \mathbf{k}-6 \mathbf{i}-3 \mathbf{j}+15 \mathbf{k}=-4 \mathbf{i}+\mathbf{j}+9 \mathbf{k}$
$|\mathbf{a}|=\sqrt{1^{2}+2^{2}+(-3)^{2}}=\sqrt{14}$
$|\mathbf{a}-\mathbf{b}|=|(\mathbf{i}+2 \mathbf{j}-3 \mathbf{k})-(-2 \mathbf{i}-\mathbf{j}+5 \mathbf{k})|=|3 \mathbf{i}+3 \mathbf{j}-8 \mathbf{k}|=\sqrt{3^{2}+3^{2}+(-8)^{2}}=\sqrt{82}$
22. $\mathbf{a}+\mathbf{b}=(2 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k})+(2 \mathbf{j}-\mathbf{k})=2 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$
$2 \mathbf{a}+3 \mathbf{b}=2(2 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k})+3(2 \mathbf{j}-\mathbf{k})=4 \mathbf{i}-8 \mathbf{j}+8 \mathbf{k}+6 \mathbf{j}-3 \mathbf{k}=4 \mathbf{i}-2 \mathbf{j}+5 \mathbf{k}$
$|\mathbf{a}|=\sqrt{2^{2}+(-4)^{2}+4^{2}}=\sqrt{36}=6$
$|\mathbf{a}-\mathbf{b}|=|(2 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k})-(2 \mathbf{j}-\mathbf{k})|=|2 \mathbf{i}-6 \mathbf{j}+5 \mathbf{k}|=\sqrt{2^{2}+(-6)^{2}+5^{2}}=\sqrt{65}$
23. The vector $-3 \mathbf{i}+7 \mathbf{j}$ has length $|-3 \mathbf{i}+7 \mathbf{j}|=\sqrt{(-3)^{2}+7^{2}}=\sqrt{58}$, so by Equation 4 the unit vector with the same direction is $\frac{1}{\sqrt{58}}(-3 \mathbf{i}+7 \mathbf{j})=-\frac{3}{\sqrt{58}} \mathbf{i}+\frac{7}{\sqrt{58}} \mathbf{j}$.
24. $|\langle-4,2,4\rangle|=\sqrt{(-4)^{2}+2^{2}+4^{2}}=\sqrt{36}=6$, so $\mathbf{u}=\frac{1}{6}\langle-4,2,4\rangle=\left\langle-\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\rangle$.
25. The vector $8 \mathbf{i}-\mathbf{j}+4 \mathbf{k}$ has length $|8 \mathbf{i}-\mathbf{j}+4 \mathbf{k}|=\sqrt{8^{2}+(-1)^{2}+4^{2}}=\sqrt{81}=9$, so by Equation 4 the unit vector with the same direction is $\frac{1}{9}(8 \mathbf{i}-\mathbf{j}+4 \mathbf{k})=\frac{8}{9} \mathbf{i}-\frac{1}{9} \mathbf{j}+\frac{4}{9} \mathbf{k}$.
26. $|\langle-2,4,2\rangle|=\sqrt{(-2)^{2}+4^{2}+2^{2}}=\sqrt{24}=2 \sqrt{6}$, so a unit vector in the direction of $\langle-2,4,2\rangle$ is $\mathbf{u}=\frac{1}{2 \sqrt{6}}\langle-2,4,2\rangle$. A vector in the same direction but with length 6 is $6 \mathbf{u}=6 \cdot \frac{1}{2 \sqrt{6}}\langle-2,4,2\rangle=\left\langle-\frac{6}{\sqrt{6}}, \frac{12}{\sqrt{6}}, \frac{6}{\sqrt{6}}\right\rangle$ or $\langle-\sqrt{6}, 2 \sqrt{6}, \sqrt{6}\rangle$.
27.

From the figure, we see that $\tan \theta=\frac{\sqrt{3}}{1}=\sqrt{3} \quad \Rightarrow \quad \theta=60^{\circ}$.

From the figure we see that $\tan \theta=\frac{6}{8}=\frac{3}{4}$, so $\theta=\tan ^{-1}\left(\frac{3}{4}\right) \approx 36.9^{\circ}$.
29. From the figure, we see that the x-component of \mathbf{v} is
$v_{1}=|\mathbf{v}| \cos (\pi / 3)=4 \cdot \frac{1}{2}=2$ and the y-component is
$v_{2}=|\mathbf{v}| \sin (\pi / 3)=4 \cdot \frac{\sqrt{3}}{2}=2 \sqrt{3}$. Thus
$\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle=\langle 2,2 \sqrt{3}\rangle$.

30. From the figure, we see that the horizontal component of the
force \mathbf{F} is $|\mathbf{F}| \cos 38^{\circ}=50 \cos 38^{\circ} \approx 39.4 \mathrm{~N}$, and the
vertical component is $|\mathbf{F}| \sin 38^{\circ}=50 \sin 38^{\circ} \approx 30.8 \mathrm{~N}$.

31. The velocity vector \mathbf{v} makes an angle of 40° with the horizontal and has magnitude equal to the speed at which the football was thrown From the figure, we see that the horizontal component of \mathbf{v} is $|\mathbf{v}| \cos 40^{\circ}=60 \cos 40^{\circ} \approx 45.96 \mathrm{ft} / \mathrm{s}$ and the vertical component is $|\mathbf{v}| \sin 40^{\circ}=60 \sin 40^{\circ} \approx 38.57 \mathrm{ft} / \mathrm{s}$.
32. The given force vectors can be expressed in terms of their horizontal and vertical components as
$20 \cos 45^{\circ} \mathbf{i}+20 \sin 45^{\circ} \mathbf{j}=10 \sqrt{2} \mathbf{i}+10 \sqrt{2} \mathbf{j}$ and $16 \cos 30^{\circ} \mathbf{i}-16 \sin 30^{\circ} \mathbf{j}=8 \sqrt{3} \mathbf{i}-8 \mathbf{j}$. The resultant force \mathbf{F} is the sum of these two vectors: $\mathbf{F}=(10 \sqrt{2}+8 \sqrt{3}) \mathbf{i}+(10 \sqrt{2}-8) \mathbf{j} \approx 28.00 \mathbf{i}+6.14 \mathbf{j}$. Then we have $|\mathbf{F}| \approx \sqrt{(28.00)^{2}+(6.14)^{2}} \approx 28.7 \mathrm{lb}$ and, letting θ be the angle \mathbf{F} makes with the positive x-axis,
$\tan \theta=\frac{10 \sqrt{2}-8}{10 \sqrt{2}+8 \sqrt{3}} \Rightarrow \theta=\tan ^{-1}\left(\frac{10 \sqrt{2}-8}{10 \sqrt{2}+8 \sqrt{3}}\right) \approx 12.4^{\circ}$.
33. The given force vectors can be expressed in terms of their horizontal and vertical components as $-300 \mathbf{i}$ and $200 \cos 60^{\circ} \mathbf{i}+200 \sin 60^{\circ} \mathbf{j}=200\left(\frac{1}{2}\right) \mathbf{i}+200\left(\frac{\sqrt{3}}{2}\right) \mathbf{j}=100 \mathbf{i}+100 \sqrt{3} \mathbf{j}$. The resultant force \mathbf{F} is the sum of these two vectors: $\mathbf{F}=(-300+100) \mathbf{i}+(0+100 \sqrt{3}) \mathbf{j}=-200 \mathbf{i}+100 \sqrt{3} \mathbf{j}$. Then we have
$|\mathbf{F}| \approx \sqrt{(-200)^{2}+(100 \sqrt{3})^{2}}=\sqrt{70,000}=100 \sqrt{7} \approx 264.6 \mathrm{~N}$. Let θ be the angle \mathbf{F} makes with the

12.5 Exercises

1. Determine whether each statement is true or false.
(a) Two lines parallel to a third line are parallel.
(b) Two lines perpendicular to a third line are parallel.
(c) Two planes parallel to a third plane are parallel.
(d) Two planes perpendicular to a third plane are parallel.
(e) Two lines parallel to a plane are parallel.
(f) Two lines perpendicular to a plane are parallel.
(g) Two planes parallel to a line are parallel.
(h) Two planes perpendicular to a line are parallel.
(i) Two planes either intersect or are parallel.
(j) Two lines either intersect or are parallel.
(k) A plane and a line either intersect or are parallel.

2-5 Find a vector equation and parametric equations for the line.
The line through the point $(6,-5,2)$ and parallel to the vector $\left\langle 1,3,-\frac{2}{3}\right\rangle$
3. The line through the point $(2,2.4,3.5)$ and parallel to the vector $3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$
4. The line through the point $(0,14,-10)$ and parallel to the line $x=-1+2 t, y=6-3 t, z=3+9 t$
5. The line through the point $(1,0,6)$ and perpendicular to the plane $x+3 y+z=5$

6-12 Find parametric equations and symmetric equations for the line.
6. The line through the origin and the point $(4,3,-1)$
7. The line through the points $\left(0, \frac{1}{2}, 1\right)$ and $(2,1,-3)$
8. The line through the points $(1.0,2.4,4.6)$ and $(2.6,1.2,0.3)$
9. The line through the points $(-8,1,4)$ and $(3,-2,4)$
10. The line through $(2,1,0)$ and perpendicular to both $\mathbf{i}+\mathbf{j}$ and $\mathbf{j}+\mathbf{k}$
11. The line through $(1,-1,1)$ and parallel to the line $x+2=\frac{1}{2} y=z-3$
12. The line of intersection of the planes $x+2 y+3 z=1$ and $x-y+z=1$
33. Is the line through $(-4,-6,1)$ and $(-2,0,-3)$ parallel to the line through $(10,18,4)$ and $(5,3,14)$?
14. Is the line through $(-2,4,0)$ and $(1,1,1)$ perpendicular to the line through $(2,3,4)$ and $(3,-1,-8)$?
15. (a) Find symmetric equations for the line that passes through the point $(1,-5,6)$ and is parallel to the vector $\langle-1,2,-3\rangle$.
(b) Find the points in which the required line in part (a) intersects the coordinate planes.
16. (a) Find parametric equations for the line through $(2,4,6)$ that is perpendicular to the plane $x-y+3 z=7$.
(b) In what points does this line intersect the coordinate planes?
17. Find a vector equation for the line segment from $(2,-1,4)$ to $(4,6,1)$.
18. Find parametric equations for the line segment from $(10,3,1)$ to $(5,6,-3)$.

19-22 Determine whether the lines L_{1} and L_{2} are parallel, skew, or intersecting. If they intersect, find the point of intersection.
19. $L_{1}: x=3+2 t, \quad y=4-t, \quad z=1+3 t$
$L_{2}: x=1+4 s, \quad y=3-2 s, \quad z=4+5 s$
20. $L_{1}: x=5-12 t, \quad y=3+9 t, \quad z=1-3 t$
$L_{2}: x=3+8 s, \quad y=-6 s, \quad z=7+2 s$
21. $L_{1}: \frac{x-2}{1}=\frac{y-3}{-2}=\frac{z-1}{-3}$
$L_{2}: \frac{x-3}{1}=\frac{y+4}{3}=\frac{z-2}{-7}$
22. $L_{1}: \frac{x}{1}=\frac{y-1}{-1}=\frac{z-2}{3}$
$L_{2}: \frac{x-2}{2}=\frac{y-3}{-2}=\frac{z}{7}$

23-40 Find an equation of the plane.
23. The plane through the origin and perpendicular to the vector $\langle 1,-2,5\rangle$
24. The plane through the point $(5,3,5)$ and with normal vector $2 \mathbf{i}+\mathbf{j}-\mathbf{k}$
25. The plane through the point $\left(-1, \frac{1}{2}, 3\right)$ and with normal vector $\mathbf{i}+4 \mathbf{j}+\mathbf{k}$
26. The plane through the point $(2,0,1)$ and perpendicular to the line $x=3 t, y=2-t, z=3+4 t$
7. The plane through the point $(1,-1,-1)$ and parallel to the plane $5 x-y-z=6$
28. The plane through the point $(2,4,6)$ and parallel to the plane $z=x+y$
29. The plane through the point $\left(1, \frac{1}{2}, \frac{1}{3}\right)$ and parallel to the plane $x+y+z=0$
30. The plane that contains the line $x=1+t, y=2-t$, $z=4-3 t$ and is parallel to the plane $5 x+2 y+z=1$
31. The plane through the points $(0,1,1),(1,0,1)$, and $(1,1,0)$
32. The plane through the origin and the points $(2,-4,6)$ and $(5,1,3)$

[^0]33. The plane through the points $(3,-1,2),(8,2,4)$, and $(-1,-2,-3)$
34. The plane that passes through the point $(1,2,3)$ and contains the line $x=3 t, y=1+t, z=2-t$
35. The plane that passes through the point $(6,0,-2)$ and contains the line $x=4-2 t, y=3+5 t, z=7+4 t$
36. The plane that passes through the point $(1,-1,1)$ and contains the line with symmetric equations $x=2 y=3 z$
37. The plane that passes through the point $(-1,2,1)$ and contains the line of intersection of the planes $x+y-z=2$ and $2 x-y+3 z=1$
38. The plane that passes through the points $(0,-2,5)$ and $(-1,3,1)$ and is perpendicular to the plane $2 z=5 x+4 y$
39. The plane that passes through the point $(1,5,1)$ and is perpendicular to the planes $2 x+y-2 z=2$ and $x+3 z=4$
40. The plane that passes through the line of intersection of the planes $x-z=1$ and $y+2 z=3$ and is perpendicular to the plane $x+y-2 z=1$

41-44 Use intercepts to help sketch the plane.

41. $2 x+5 y+z=10$
42. $3 x+y+2 z=6$
43. $6 x-3 y+4 z=6$
44. $6 x+5 y-3 z=15$

45-47 Find the point at which the line intersects the given plane.
45. $x=3-t, y=2+t, z=5 t ; \quad x-y+2 z=9$
46. $x=1+2 t, y=4 t, z=2-3 t ; \quad x+2 y-z+1=0$
47. $x=y-1=2 z ; \quad 4 x-y+3 z=8$
48. Where does the line through $(1,0,1)$ and $(4,-2,2)$ intersect the plane $x+y+z=6$?
49. Find direction numbers for the line of intersection of the planes $x+y+z=1$ and $x+z=0$.
50. Find the cosine of the angle between the planes $x+y+z=0$ and $x+2 y+3 z=1$.

51-56 Determine whether the planes are parallel, perpendicular, or neither. If neither, find the angle between them.
51. $x+4 y-3 z=1, \quad-3 x+6 y+7 z=0$
52. $2 z=4 y-x, \quad 3 x-12 y+6 z=1$
53. $x+y+z=1, \quad x-y+z=1$
54. $2 x-3 y+4 z=5, \quad x+6 y+4 z=3$
55. $x=4 y-2 z, \quad 8 y=1+2 x+4 z$
56. $x+2 y+2 z=1, \quad 2 x-y+2 z=1$

57-58 (a) Find parametric equations for the line of intersection of the planes and (b) find the angle between the planes.
57. $x+y+z=1, \quad x+2 y+2 z=1$
58. $3 x-2 y+z=1, \quad 2 x+y-3 z=3$

59-60 Find symmetric equations for the line of intersection of the planes.
59. $5 x-2 y-2 z=1, \quad 4 x+y+z=6$
60. $z=2 x-y-5, \quad z=4 x+3 y-5$
61. Find an equation for the plane consisting of all points that are equidistant from the points $(1,0,-2)$ and $(3,4,0)$.
\square 62. Find an equation for the plane consisting of all points that are equidistant from the points $(2,5,5)$ and $(-6,3,1)$.
63. Find an equation of the plane with x-intercept a, y-intercept b, and z-intercept c.
64. (a) Find the point at which the given lines intersect:

$$
\begin{aligned}
& \mathbf{r}=\langle 1,1,0\rangle+t\langle 1,-1,2\rangle \\
& \mathbf{r}=\langle 2,0,2\rangle+s\langle-1,1,0\rangle
\end{aligned}
$$

(b) Find an equation of the plane that contains these lines.
65. Find parametric equations for the line through the point $(0,1,2)$ that is parallel to the plane $x+y+z=2$ and perpendicular to the line $x=1+t, y=1-t, z=2 t$.
66. Find parametric equations for the line through the point $(0,1,2)$ that is perpendicular to the line $x=1+t$, $y=1-t, z=2 t$ and intersects this line.
67. Which of the following four planes are parallel? Are any of them identical?

$$
\begin{array}{ll}
P_{1}: 3 x+6 y-3 z=6 & P_{2}: 4 x-12 y+8 z=5 \\
P_{3}: 9 y=1+3 x+6 z & P_{4}: z=x+2 y-2
\end{array}
$$

68. Which of the following four lines are parallel? Are any of them identical?

$$
\begin{aligned}
& L_{1}: x=1+6 t, \quad y=1-3 t, \quad z=12 t+5 \\
& L_{2}: x=1+2 t, \quad y=t, \quad z=1+4 t \\
& L_{3}: 2 x-2=4-4 y=z+1 \\
& L_{4}: \mathbf{r}=\langle 3,1,5\rangle+t\langle 4,2,8\rangle
\end{aligned}
$$

69-70 Use the formula in Exercise 45 in Section 12.4 to find the distance from the point to the given line.
69. $(4,1,-2) ; x=1+t, y=3-2 t, z=4-3 t$
70. $(0,1,3) ; x=2 t, y=6-2 t, z=3+t$

71-72 Find the distance from the point to the given plane.
71. $(1,-2,4), \quad 3 x+2 y+6 z=5$
72. $(-6,3,5), \quad x-2 y-4 z=8$

73-74 Find the distance between the given parallel planes.
73. $2 x-3 y+z=4, \quad 4 x-6 y+2 z=3$
74. $6 z=4 y-2 x, \quad 9 z=1-3 x+6 y$
75. Show that the distance between the parallel planes $a x+b y+c z+d_{1}=0$ and $a x+b y+c z+d_{2}=0$ is

$$
D=\frac{\left|d_{1}-d_{2}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

76. Find equations of the planes that are parallel to the plane $x+2 y-2 z=1$ and two units away from it.
77. Show that the lines with symmetric equations $x=y=z$ and $x+1=y / 2=z / 3$ are skew, and find the distance between these lines.
78. Find the distance between the skew lines with parametric equations $x=1+t, y=1+6 t, z=2 t$, and $x=1+2 s$, $y=5+15 s, z=-2+6 s$.
79. Let L_{1} be the line through the origin and the point $(2,0,-1)$. Let L_{2} be the line through the points $(1,-1,1)$ and $(4,1,3)$. Find the distance between L_{1} and L_{2}.
80. Let L_{1} be the line through the points $(1,2,6)$ and $(2,4,8)$. Let L_{2} be the line of intersection of the planes π_{1} and π_{2}, where π_{1} is the plane $x-y+2 z+1=0$ and π_{2} is the plane through the points $(3,2,-1),(0,0,1)$, and $(1,2,1)$. Calculate the distance between L_{1} and L_{2}.
81. If a, b, and c are not all 0 , show that the equation $a x+b y+c z+d=0$ represents a plane and $\langle a, b, c\rangle$ is a normal vector to the plane.

Hint: Suppose $a \neq 0$ and rewrite the equation in the form

$$
a\left(x+\frac{d}{a}\right)+b(y-0)+c(z-0)=0
$$

82. Give a geometric description of each family of planes.
(a) $x+y+z=c$
(b) $x+y+c z=1$
(c) $y \cos \theta+z \sin \theta=1$

LABORATORY PROJECT PUTTING 3D IN PERSPECTIVE

Computer graphics programmers face the same challenge as the great painters of the past: how to represent a three-dimensional scene as a flat image on a two-dimensional plane (a screen or a canvas). To create the illusion of perspective, in which closer objects appear larger than those farther away, three-dimensional objects in the computer's memory are projected onto a rectangular screen window from a viewpoint where the eye, or camera, is located. The viewing volume - the portion of space that will be visible-is the region contained by the four planes that pass through the viewpoint and an edge of the screen window. If objects in the scene extend beyond these four planes, they must be truncated before pixel data are sent to the screen. These planes are therefore called clipping planes.

1. Suppose the screen is represented by a rectangle in the $y z$-plane with vertices $(0, \pm 400,0)$ and $(0, \pm 400,600)$, and the camera is placed at $(1000,0,0)$. A line L in the scene passes through the points $(230,-285,102)$ and $(860,105,264)$. At what points should L be clipped by the clipping planes?
2. If the clipped line segment is projected on the screen window, identify the resulting line segment.
3. Use parametric equations to plot the edges of the screen window, the clipped line segment, and its projection on the screen window. Then add sight lines connecting the viewpoint to each end of the clipped segments to verify that the projection is correct.
4. A rectangle with vertices ($621,-147,206$), $(563,31,242),(657,-111,86)$, and $(599,67,122)$ is added to the scene. The line L intersects this rectangle. To make the rectangle appear opaque, a programmer can use hidden line rendering, which removes portions of objects that are behind other objects. Identify the portion of L that should be removed.

12.5 Equations of Lines and Planes

1. (a) True; each of the first two lines has a direction vector parallel to the direction vector of the third line, so these vectors are each scalar multiples of the third direction vector. Then the first two direction vectors are also scalar multiples of each other, so these vectors, and hence the two lines, are parallel.
(b) False; for example, the x - and y-axes are both perpendicular to the z-axis, yet the x - and y-axes are not parallel.
(c) True; each of the first two planes has a normal vector parallel to the normal vector of the third plane, so these two normal vectors are parallel to each other and the planes are parallel.
(d) False; for example, the $x y$ - and $y z$-planes are not parallel, yet they are both perpendicular to the $x z$-plane.
(e) False; the x - and y-axes are not parallel, yet they are both parallel to the plane $z=1$.
(f) True; if each line is perpendicular to a plane, then the lines' direction vectors are both parallel to a normal vector for the plane. Thus, the direction vectors are parallel to each other and the lines are parallel.
(g) False; the planes $y=1$ and $z=1$ are not parallel, yet they are both parallel to the x-axis.
(h) True; if each plane is perpendicular to a line, then any normal vector for each plane is parallel to a direction vector for the line. Thus, the normal vectors are parallel to each other and the planes are parallel.
(i) True; see Figure 9 and the accompanying discussion.
(j) False; they can be skew, as in Example 3.
(k) True. Consider any normal vector for the plane and any direction vector for the line. If the normal vector is perpendicular to the direction vector, the line and plane are parallel. Otherwise, the vectors meet at an angle $\theta, 0^{\circ} \leq \theta<90^{\circ}$, and the line will intersect the plane at an angle $90^{\circ}-\theta$.
2. For this line, we have $\mathbf{r}_{0}=6 \mathbf{i}-5 \mathbf{j}+2 \mathbf{k}$ and $\mathbf{v}=\mathbf{i}+3 \mathbf{j}-\frac{2}{3} \mathbf{k}$, so a vector equation is $\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}=(6 \mathbf{i}-5 \mathbf{j}+2 \mathbf{k})+t\left(\mathbf{i}+3 \mathbf{j}-\frac{2}{3} \mathbf{k}\right)=(6+t) \mathbf{i}+(-5+3 t) \mathbf{j}+\left(2-\frac{2}{3} t\right) \mathbf{k}$ and parametric equations are $x=6+t, y=-5+3 t, z=2-\frac{2}{3} t$.
3. For this line, we have $\mathbf{r}_{0}=2 \mathbf{i}+2.4 \mathbf{j}+3.5 \mathbf{k}$ and $\mathbf{v}=3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$, so a vector equation is $\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}=(2 \mathbf{i}+2.4 \mathbf{j}+3.5 \mathbf{k})+t(3 \mathbf{i}+2 \mathbf{j}-\mathbf{k})=(2+3 t) \mathbf{i}+(2.4+2 t) \mathbf{j}+(3.5-t) \mathbf{k}$ and parametric equations are $x=2+3 t, y=2.4+2 t, z=3.5-t$.
4. This line has the same direction as the given line, $\mathbf{v}=2 \mathbf{i}-3 \mathbf{j}+9 \mathbf{k}$. Here $\mathbf{r}_{0}=14 \mathbf{j}-10 \mathbf{k}$, so a vector equation is $\mathbf{r}=(14 \mathbf{j}-10 \mathbf{k})+t(2 \mathbf{i}-3 \mathbf{j}+9 \mathbf{k})=2 t \mathbf{i}+(14-3 t) \mathbf{j}+(-10+9 t) \mathbf{k}$ and parametric equations are $x=2 t$, $y=14-3 t, z=-10+9 t$.
5. A line perpendicular to the given plane has the same direction as a normal vector to the plane, such as
$\mathbf{n}=\langle 1,3,1\rangle$. So $\mathbf{r}_{0}=\mathbf{i}+6 \mathbf{k}$, and we can take $\mathbf{v}=\mathbf{i}+3 \mathbf{j}+\mathbf{k}$. Then a vector equation is $\mathbf{r}=(\mathbf{i}+6 \mathbf{k})+t(\mathbf{i}+3 \mathbf{j}+\mathbf{k})=(1+t) \mathbf{i}+3 t \mathbf{j}+(6+t) \mathbf{k}$, and parametric equations are $x=1+t, y=3 t, z=6+t$.
6. The vector $\mathbf{v}=\langle 4-0,3-0,-1-0\rangle=\langle 4,3,-1\rangle$ is parallel to the line. Letting $P_{0}=(0,0,0)$, parametric equations are $x=0+4 \cdot t=4 t, y=0+3 \cdot t=3 t, z=0+(-1) \cdot t=-t$, while symmetric equations are $\frac{x}{4}=\frac{y}{3}=\frac{z}{-1}$ or $\frac{x}{4}=\frac{y}{3}=-z$.
7. The vector $\mathbf{v}=\left\langle 2-0,1-\frac{1}{2},-3-1\right\rangle=\left\langle 2, \frac{1}{2},-4\right\rangle$ is parallel to the line. Letting $P_{0}=(2,1,-3)$, parametric equations are $x=2+2 t, y=1+\frac{1}{2} t, z=-3-4 t$, while symmetric equations are $\frac{x-2}{2}=\frac{y-1}{1 / 2}=\frac{z+3}{-4}$ or $\frac{x-2}{2}=2 y-2=\frac{z+3}{-4}$.
8. $\mathbf{v}=\langle 2.6-1.0,1.2-2.4,0.3-4.6\rangle=\langle 1.6,-1.2,-4.3\rangle$, and letting $P_{0}=(1.0,2.4,4.6)$, parametric equations are $x=1.0+1.6 t, y=2.4-1.2 t, z=4.6-4.3 t$, while symmetric equations are $\frac{x-1.0}{1.6}=\frac{y-2.4}{-1.2}=\frac{z-4.6}{-4.3}$.
9. $\mathbf{v}=\langle 3-(-8),-2-1,4-4\rangle=\langle 11,-3,0\rangle$, and letting $P_{0}=(-8,1,4)$, parametric equations are $x=-8+11 t$, $y=1-3 t, z=4+0 t=4$, while symmetric equations are $\frac{x+8}{11}=\frac{y-1}{-3}, z=4$. Notice here that the direction number $c=0$, so rather than writing $\frac{z-4}{0}$ in the symmetric equation we must write the equation $z=4$ separately.
10. $\mathbf{v}=(\mathbf{i}+\mathbf{j}) \times(\mathbf{j}+\mathbf{k})=\left|\begin{array}{lll}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right|=\mathbf{i}-\mathbf{j}+\mathbf{k}$ is the direction of the line perpendicular to both $\mathbf{i}+\mathbf{j}$ and $\mathbf{j}+\mathbf{k}$. With $P_{0}=(2,1,0)$, parametric equations are $x=2+t, y=1-t, z=t$ and symmetric equations are $x-2=\frac{y-1}{-1}=z$ or $x-2=1-y=z$.
11. The line has direction $\mathbf{v}=\langle 1,2,1\rangle$. Letting $P_{0}=(1,-1,1)$, parametric equations are $x=1+t, y=-1+2 t, z=1+t$ and symmetric equations are $x-1=\frac{y+1}{2}=z-1$.
12. Setting $z=0$ we see that $(1,0,0)$ satisfies the equations of both planes, so they do in fact have a line of intersection.

The line is perpendicular to the normal vectors of both planes, so a direction vector for the line is
$\mathbf{v}=\mathbf{n}_{1} \times \mathbf{n}_{2}=\langle 1,2,3\rangle \times\langle 1,-1,1\rangle=\langle 5,2,-3\rangle$. Taking the point $(1,0,0)$ as P_{0}, parametric equations are $x=1+5 t$, $y=2 t, z=-3 t$, and symmetric equations are $\frac{x-1}{5}=\frac{y}{2}=\frac{z}{-3}$.
13. Direction vectors of the lines are $\mathbf{v}_{1}=\langle-2-(-4), 0-(-6),-3-1\rangle=\langle 2,6,-4\rangle$ and $\mathbf{v}_{2}=\langle 5-10,3-18,14-4\rangle=\langle-5,-15,10\rangle$, and since $\mathbf{v}_{2}=-\frac{5}{2} \mathbf{v}_{1}$, the direction vectors and thus the lines are parallel.
14. Direction vectors of the lines are $\mathbf{v}_{1}=\langle 3,-3,1\rangle$ and $\mathbf{v}_{2}=\langle 1,-4,-12\rangle$. Since $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=3+12-12 \neq 0$, the vectors and thus the lines are not perpendicular.
15. (a) The line passes through the point $(1,-5,6)$ and a direction vector for the line is $\langle-1,2,-3\rangle$, so symmetric equations for the line are $\frac{x-1}{-1}=\frac{y+5}{2}=\frac{z-6}{-3}$.
(b) The line intersects the $x y$-plane when $z=0$, so we need $\frac{x-1}{-1}=\frac{y+5}{2}=\frac{0-6}{-3}$ or $\frac{x-1}{-1}=2 \Rightarrow x=-1$, $\frac{y+5}{2}=2 \Rightarrow y=-1$. Thus the point of intersection with the $x y$-plane is $(-1,-1,0)$. Similarly for the $y z$-plane, we need $x=0 \Rightarrow 1=\frac{y+5}{2}=\frac{z-6}{-3} \quad \Rightarrow \quad y=-3, z=3$. Thus the line intersects the $y z$-plane at $(0,-3,3)$. For the $x z$-plane, we need $y=0 \Rightarrow \frac{x-1}{-1}=\frac{5}{2}=\frac{z-6}{-3} \quad \Rightarrow \quad x=-\frac{3}{2}, z=-\frac{3}{2}$. So the line intersects the $x z$-plane at $\left(-\frac{3}{2}, 0,-\frac{3}{2}\right)$.
16. (a) A vector normal to the plane $x-y+3 z=7$ is $\mathbf{n}=\langle 1,-1,3\rangle$, and since the line is to be perpendicular to the plane, \mathbf{n} is also a direction vector for the line. Thus parametric equations of the line are $x=2+t, y=4-t, z=6+3 t$.
(b) On the $x y$-plane, $z=0$. So $z=6+3 t=0 \Rightarrow t=-2$ in the parametric equations of the line, and therefore $x=0$ and $y=6$, giving the point of intersection $(0,6,0)$. For the $y z$-plane, $x=0$ so we get the same point of interesection: $(0,6,0)$. For the $x z$-plane, $y=0$ which implies $t=4$, so $x=6$ and $z=18$ and the point of intersection is $(6,0,18)$.
17. From Equation 4, the line segment from $\mathbf{r}_{0}=2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}$ to $\mathbf{r}_{1}=4 \mathbf{i}+6 \mathbf{j}+\mathbf{k}$ is

$$
\mathbf{r}(t)=(1-t) \mathbf{r}_{0}+t \mathbf{r}_{1}=(1-t)(2 \mathbf{i}-\mathbf{j}+4 \mathbf{k})+t(4 \mathbf{i}+6 \mathbf{j}+\mathbf{k})=(2 \mathbf{i}-\mathbf{j}+4 \mathbf{k})+t(2 \mathbf{i}+7 \mathbf{j}-3 \mathbf{k}), 0 \leq t \leq 1
$$

18. From Equation 4, the line segment from $\mathbf{r}_{0}=10 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$ to $\mathbf{r}_{1}=5 \mathbf{i}+6 \mathbf{j}-3 \mathbf{k}$ is

$$
\begin{aligned}
\mathbf{r}(t) & =(1-t) \mathbf{r}_{0}+t \mathbf{r}_{1}=(1-t)(10 \mathbf{i}+3 \mathbf{j}+\mathbf{k})+t(5 \mathbf{i}+6 \mathbf{j}-3 \mathbf{k}) \\
& =(10 \mathbf{i}+3 \mathbf{j}+\mathbf{k})+t(-5 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}), \quad 0 \leq t \leq 1
\end{aligned}
$$

The corresponding parametric equations are $x=10-5 t, y=3+3 t, z=1-4 t, 0 \leq t \leq 1$.
19. Since the direction vectors $\langle 2,-1,3\rangle$ and $\langle 4,-2,5\rangle$ are not scalar multiples of each other, the lines aren't parallel. For the lines to intersect, we must be able to find one value of t and one value of s that produce the same point from the respective parametric equations. Thus we need to satisfy the following three equations: $3+2 t=1+4 s, 4-t=3-2 s$, $1+3 t=4+5 s$. Solving the last two equations we get $t=1, s=0$ and checking, we see that these values don't satisfy the first equation. Thus the lines aren't parallel and don't intersect, so they must be skew lines.
20. Since the direction vectors are $\mathbf{v}_{1}=\langle-12,9,-3\rangle$ and $\mathbf{v}_{2}=\langle 8,-6,2\rangle$, we have $\mathbf{v}_{1}=-\frac{3}{2} \mathbf{v}_{2}$ so the lines are parallel.
21. Since the direction vectors $\langle 1,-2,-3\rangle$ and $\langle 1,3,-7\rangle$ aren't scalar multiples of each other, the lines aren't parallel. Parametric equations of the lines are $L_{1}: x=2+t, y=3-2 t, z=1-3 t$ and $L_{2}: x=3+s, y=-4+3 s, z=2-7 s$. Thus, for the lines to intersect, the three equations $2+t=3+s, 3-2 t=-4+3 s$, and $1-3 t=2-7 s$ must be satisfied simultaneously. Solving the first two equations gives $t=2, s=1$ and checking, we see that these values do satisfy the third equation, so the lines intersect when $t=2$ and $s=1$, that is, at the point $(4,-1,-5)$.

CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

22. The direction vectors $\langle 1,-1,3\rangle$ and $\langle 2,-2,7\rangle$ are not parallel, so neither are the lines. Parametric equations for the lines are $L_{1}: x=t, y=1-t, z=2+3 t$ and $L_{2}: x=2+2 s, y=3-2 s, z=7 s$. Thus, for the lines to interesect, the three equations $t=2+2 s, 1-t=3-2 s$, and $2+3 t=7 s$ must be satisfied simultaneously. Solving the last two equations gives $t=-10, s=-4$ and checking, we see that these values don't satisfy the first equation. Thus the lines aren't parallel and don't intersect, so they must be skew.
23. Since the plane is perpendicular to the vector $\langle 1,-2,5\rangle$, we can take $\langle 1,-2,5\rangle$ as a normal vector to the plane. $(0,0,0)$ is a point on the plane, so setting $a=1, b=-2, c=5$ and $x_{0}=0, y_{0}=0, z_{0}=0$ in Equation 7 gives $1(x-0)+(-2)(y-0)+5(z-0)=0$ or $x-2 y+5 z=0$ as an equation of the plane.
24. $2 \mathbf{i}+\mathbf{j}-\mathbf{k}=\langle 2,1,-1\rangle$ is a normal vector to the plane and $(5,3,5)$ is a point on the plane, so setting $a=2, b=1, c=-1$, $x_{0}=5, y_{0}=3, z_{0}=5$ in Equation 7 gives $2(x-5)+1(y-3)+(-1)(z-5)=0$ or $2 x+y-z=8$ as an equation of the plane.
25. $\mathbf{i}+4 \mathbf{j}+\mathbf{k}=\langle 1,4,1\rangle$ is a normal vector to the plane and $\left(-1, \frac{1}{2}, 3\right)$ is a point on the plane, so setting $a=1, b=4, c=1$, $x_{0}=-1, y_{0}=\frac{1}{2}, z_{0}=3$ in Equation 7 gives $1[x-(-1)]+4\left(y-\frac{1}{2}\right)+1(z-3)=0$ or $x+4 y+z=4$ as an equation of the plane.
26. Since the line is perpendicular to the plane, its direction vector $\langle 3,-1,4\rangle$ is a normal vector to the plane. The point $(2,0,1)$ is on the plane, so an equation of the plane is $3(x-2)+(-1)(y-0)+4(z-1)=0$ or $3 x-y+4 z=10$.
27. Since the two planes are parallel, they will have the same normal vectors. So we can take $\mathbf{n}=\langle 5,-1,-1\rangle$, and an equation of the plane is $5(x-1)-1[y-(-1)]-1[z-(-1)]=0$ or $5 x-y-z=7$.
28. Since the two planes are parallel, they will have the same normal vectors. A normal vector for the plane $z=x+y$ or $x+y-z=0$ is $\mathbf{n}=\langle 1,1,-1\rangle$, and an equation of the desired plane is $1(x-2)+1(y-4)-1(z-6)=0$ or $x+y-z=0$ (the same plane!).
29. Since the two planes are parallel, they will have the same normal vectors. So we can take $\mathbf{n}=\langle 1,1,1\rangle$, and an equation of the plane is $1(x-1)+1\left(y-\frac{1}{2}\right)+1\left(z-\frac{1}{3}\right)=0$ or $x+y+z=\frac{11}{6}$ or $6 x+6 y+6 z=11$.
30. First, a normal vector for the plane $5 x+2 y+z=1$ is $\mathbf{n}=\langle 5,2,1\rangle$. A direction vector for the line is $\mathbf{v}=\langle 1,-1,-3\rangle$, and since $\mathbf{n} \cdot \mathbf{v}=0$ we know the line is perpendicular to \mathbf{n} and hence parallel to the plane. Thus, there is a parallel plane which contains the line. By putting $t=0$, we know that the point $(1,2,4)$ is on the line and hence the new plane. We can use the same normal vector $\mathbf{n}=\langle 5,2,1\rangle$, so an equation of the plane is $5(x-1)+2(y-2)+1(z-4)=0$ or $5 x+2 y+z=13$.
31. Here the vectors $\mathbf{a}=\langle 1-0,0-1,1-1\rangle=\langle 1,-1,0\rangle$ and $\mathbf{b}=\langle 1-0,1-1,0-1\rangle=\langle 1,0,-1\rangle$ lie in the plane, so $\mathbf{a} \times \mathbf{b}$ is a normal vector to the plane. Thus, we can take $\mathbf{n}=\mathbf{a} \times \mathbf{b}=\langle 1-0,0+1,0+1\rangle=\langle 1,1,1\rangle$. If P_{0} is the point $(0,1,1)$, an equation of the plane is $1(x-0)+1(y-1)+1(z-1)=0$ or $x+y+z=2$.
32. Here the vectors $\mathbf{a}=\langle 2,-4,6\rangle$ and $\mathbf{b}=\langle 5,1,3\rangle$ lie in the plane, so
$\mathbf{n}=\mathbf{a} \times \mathbf{b}=\langle-12-6,30-6,2+20\rangle=\langle-18,24,22\rangle$ is a normal vector to the plane and an equation of the plane is
$-18(x-0)+24(y-0)+22(z-0)=0$ or $-18 x+24 y+22 z=0$.
33. Here the vectors $\mathbf{a}=\langle 8-3,2-(-1), 4-2\rangle=\langle 5,3,2\rangle$ and $\mathbf{b}=\langle-1-3,-2-(-1),-3-2\rangle=\langle-4,-1,-5\rangle$ lie in the plane, so a normal vector to the plane is $\mathbf{n}=\mathbf{a} \times \mathbf{b}=\langle-15+2,-8+25,-5+12\rangle=\langle-13,17,7\rangle$ and an equation of the plane is $-13(x-3)+17[y-(-1)]+7(z-2)=0$ or $-13 x+17 y+7 z=-42$.
34. If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given line lies in the plane, its direction vector $\mathbf{a}=\langle 3,1,-1\rangle$ is one vector in the plane. We can verify that the given point $(1,2,3)$ does not lie on this line, so to find another nonparallel vector \mathbf{b} which lies in the plane, we can pick any point on the line and find a vector connecting the points. If we put $t=0$, we see that $(0,1,2)$ is on the line, so
$\mathbf{b}=\langle 1-0,2-1,3-2\rangle=\langle 1,1,1\rangle$ and $\mathbf{n}=\mathbf{a} \times \mathbf{b}=\langle 1+1,-1-3,3-1\rangle=\langle 2,-4,2\rangle$. Thus, an equation of the plane is $2(x-1)-4(y-2)+2(z-3)=0$ or $2 x-4 y+2 z=0$. (Equivalently, we can write $x-2 y+z=0$.)
35. If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given line lies in the plane, its direction vector $\mathbf{a}=\langle-2,5,4\rangle$ is one vector in the plane. We can verify that the given point $(6,0,-2)$ does not lie on this line, so to find another nonparallel vector \mathbf{b} which lies in the plane, we can pick any point on the line and find a vector connecting the points. If we put $t=0$, we see that $(4,3,7)$ is on the line, so
$\mathbf{b}=\langle 6-4,0-3,-2-7\rangle=\langle 2,-3,-9\rangle$ and $\mathbf{n}=\mathbf{a} \times \mathbf{b}=\langle-45+12,8-18,6-10\rangle=\langle-33,-10,-4\rangle$. Thus, an equation of the plane is $-33(x-6)-10(y-0)-4[z-(-2)]=0$ or $33 x+10 y+4 z=190$.
36. Since the line $x=2 y=3 z$, or $x=\frac{y}{1 / 2}=\frac{z}{1 / 3}$, lies in the plane, its direction vector $\mathbf{a}=\left\langle 1, \frac{1}{2}, \frac{1}{3}\right\rangle$ is parallel to the plane.

The point $(0,0,0)$ is on the line (put $t=0$), and we can verify that the given point $(1,-1,1)$ in the plane is not on the line.
The vector connecting these two points, $\mathbf{b}=\langle 1,-1,1\rangle$, is therefore parallel to the plane, but not parallel to $\langle 1,2,3\rangle$. Then $\mathbf{a} \times \mathbf{b}=\left\langle\frac{1}{2}+\frac{1}{3}, \frac{1}{3}-1,-1-\frac{1}{2}\right\rangle=\left\langle\frac{5}{6},-\frac{2}{3},-\frac{3}{2}\right\rangle$ is a normal vector to the plane, and an equation of the plane is $\frac{5}{6}(x-0)-\frac{2}{3}(y-0)-\frac{3}{2}(z-0)=0$ or $5 x-4 y-9 z=0$.
37. A direction vector for the line of intersection is $\mathbf{a}=\mathbf{n}_{1} \times \mathbf{n}_{2}=\langle 1,1,-1\rangle \times\langle 2,-1,3\rangle=\langle 2,-5,-3\rangle$, and \mathbf{a} is parallel to the desired plane. Another vector parallel to the plane is the vector connecting any point on the line of intersection to the given point $(-1,2,1)$ in the plane. Setting $x=0$, the equations of the planes reduce to $y-z=2$ and $-y+3 z=1$ with simultaneous solution $y=\frac{7}{2}$ and $z=\frac{3}{2}$. So a point on the line is $\left(0, \frac{7}{2}, \frac{3}{2}\right)$ and another vector parallel to the plane is $\left\langle-1,-\frac{3}{2},-\frac{1}{2}\right\rangle$. Then a normal vector to the plane is $\mathbf{n}=\langle 2,-5,-3\rangle \times\left\langle-1,-\frac{3}{2},-\frac{1}{2}\right\rangle=\langle-2,4,-8\rangle$ and an equation of the plane is $-2(x+1)+4(y-2)-8(z-1)=0$ or $x-2 y+4 z=-1$.
38. The points $(0,-2,5)$ and $(-1,3,1)$ lie in the desired plane, so the vector $\mathbf{v}_{1}=\langle-1,5,-4\rangle$ connecting them is parallel to the plane. The desired plane is perpendicular to the plane $2 z=5 x+4 y$ or $5 x+4 y-2 z=0$ and for perpendicular planes, a normal vector for one plane is parallel to the other plane, so $\mathbf{v}_{2}=\langle 5,4,-2\rangle$ is also parallel to the desired plane.

A normal vector to the desired plane is $\mathbf{n}=\mathbf{v}_{1} \times \mathbf{v}_{2}=\langle-10+16,-20-2,-4-25\rangle=\langle 6,-22,-29\rangle$.
Taking $\left(x_{0}, y_{0}, z_{0}\right)=(0,-2,5)$, the equation we are looking for is $6(x-0)-22(y+2)-29(z-5)=0$ or $6 x-22 y-29 z=-101$.
39. If a plane is perpendicular to two other planes, its normal vector is perpendicular to the normal vectors of the other two planes. Thus $\langle 2,1,-2\rangle \times\langle 1,0,3\rangle=\langle 3-0,-2-6,0-1\rangle=\langle 3,-8,-1\rangle$ is a normal vector to the desired plane. The point $(1,5,1)$ lies on the plane, so an equation is $3(x-1)-8(y-5)-(z-1)=0$ or $3 x-8 y-z=-38$.
40. $\mathbf{n}_{1}=\langle 1,0,-1\rangle$ and $\mathbf{n}_{2}=\langle 0,1,2\rangle$. Setting $z=0$, it is easy to see that $(1,3,0)$ is a point on the line of intersection of $x-z=1$ and $y+2 z=3$. The direction of this line is $\mathbf{v}_{1}=\mathbf{n}_{1} \times \mathbf{n}_{2}=\langle 1,-2,1\rangle$. A second vector parallel to the desired plane is $\mathbf{v}_{2}=\langle 1,1,-2\rangle$, since it is perpendicular to $x+y-2 z=1$. Therefore, a normal of the plane in question is $\mathbf{n}=\mathbf{v}_{1} \times \mathbf{v}_{2}=\langle 4-1,1+2,1+2\rangle=\langle 3,3,3\rangle$, or we can use $\langle 1,1,1\rangle$. Taking $\left(x_{0}, y_{0}, z_{0}\right)=(1,3,0)$, the equation we are looking for is $(x-1)+(y-3)+z=0 \quad \Leftrightarrow \quad x+y+z=4$.
41. To find the x-intercept we set $y=z=0$ in the equation $2 x+5 y+z=10$ and obtain $2 x=10 \Rightarrow x=5$ so the x-intercept is $(5,0,0)$. When $x=z=0$ we get $5 y=10 \Rightarrow y=2$, so the y-intercept is $(0,2,0)$ Setting $x=y=0$ gives $z=10$, so the z-intercept is $(0,0,10)$ and we graph the portion of the plane that lies in the first octant.

42. To find the x-intercept we set $y=z=0$ in the equation $3 x+y+2 z=6$ and obtain $3 x=6 \quad \Rightarrow \quad x=2$ so the x-intercept is $(2,0,0)$. When $x=z=0$ we get $y=6$ so the y-intercept is $(0,6,0)$. Setting $x=y=0$ gives $2 z=6 \Rightarrow z=3$, so the z-intercept is $(0,0,3)$. The figure shows the portion of the plane that lies in the first octant.

43. Setting $y=z=0$ in the equation $6 x-3 y+4 z=6$ gives $6 x=6 \quad \Rightarrow$ $x=1$, when $x=z=0$ we have $-3 y=6 \Rightarrow y=-2$, and $x=y=0$ implies $4 z=6 \Rightarrow z=\frac{3}{2}$, so the intercepts are $(1,0,0),(0,-2,0)$, and $\left(0,0, \frac{3}{2}\right)$. The figure shows the portion of the plane cut off by the coordinate planes.

44. Setting $y=z=0$ in the equation $6 x+5 y-3 z=15$ gives $6 x=15 \Rightarrow$
$x=\frac{5}{2}$, when $x=z=0$ we have $5 y=15 \Rightarrow y=3$, and $x=y=0$ implies $-3 z=15 \Rightarrow z=-5$, so the intercepts are $\left(\frac{5}{2}, 0,0\right),(0,3,0)$, and $(0,0,-5)$. The figure shows the portion of the plane cut off by the coordinate planes.

45. Substitute the parametric equations of the line into the equation of the plane: $(3-t)-(2+t)+2(5 t)=9 \Rightarrow$ $8 t=8 \Rightarrow t=1$. Therefore, the point of intersection of the line and the plane is given by $x=3-1=2, y=2+1=3$, and $z=5(1)=5$, that is, the point $(2,3,5)$.
46. Substitute the parametric equations of the line into the equation of the plane: $(1+2 t)+2(4 t)-(2-3 t)+1=0 \Rightarrow$ $13 t=0 \Rightarrow t=0$. Therefore, the point of intersection of the line and the plane is given by $x=1+2(0)=1$, $y=4(0)=0$, and $z=2-3(0)=2$, that is, the point $(1,0,2)$.
47. Parametric equations for the line are $x=t, y=1+t, z=\frac{1}{2} t$ and substituting into the equation of the plane gives $4(t)-(1+t)+3\left(\frac{1}{2} t\right)=8 \Rightarrow \frac{9}{2} t=9 \quad \Rightarrow \quad t=2$. Thus $x=2, y=1+2=3, z=\frac{1}{2}(2)=1$ and the point of intersection is $(2,3,1)$.
48. A direction vector for the line through $(1,0,1)$ and $(4,-2,2)$ is $\mathbf{v}=\langle 3,-2,1\rangle$ and, taking $P_{0}=(1,0,1)$, parametric equations for the line are $x=1+3 t, y=-2 t, z=1+t$. Substitution of the parametric equations into the equation of the plane gives $1+3 t-2 t+1+t=6 \Rightarrow t=2$. Then $x=1+3(2)=7, y=-2(2)=-4$, and $z=1+2=3$ so the point of intersection is $(7,-4,3)$.
49. Setting $x=0$, we see that $(0,1,0)$ satisfies the equations of both planes, so that they do in fact have a line of intersection. $\mathbf{v}=\mathbf{n}_{1} \times \mathbf{n}_{2}=\langle 1,1,1\rangle \times\langle 1,0,1\rangle=\langle 1,0,-1\rangle$ is the direction of this line. Therefore, direction numbers of the intersecting line are $1,0,-1$.
50. The angle between the two planes is the same as the angle between their normal vectors. The normal vectors of the two planes are $\langle 1,1,1\rangle$ and $\langle 1,2,3\rangle$. The cosine of the angle θ between these two planes is
$\cos \theta=\frac{\langle 1,1,1\rangle \cdot\langle 1,2,3\rangle}{|\langle 1,1,1\rangle||\langle 1,2,3\rangle|}=\frac{1+2+3}{\sqrt{1+1+1} \sqrt{1+4+9}}=\frac{6}{\sqrt{42}}=\sqrt{\frac{6}{7}}$.
51. Normal vectors for the planes are $\mathbf{n}_{1}=\langle 1,4,-3\rangle$ and $\mathbf{n}_{2}=\langle-3,6,7\rangle$, so the normals (and thus the planes) aren't parallel. But $\mathbf{n}_{1} \cdot \mathbf{n}_{2}=-3+24-21=0$, so the normals (and thus the planes) are perpendicular.
52. Normal vectors for the planes are $\mathbf{n}_{1}=\langle-1,4,-2\rangle$ and $\mathbf{n}_{2}=\langle 3,-12,6\rangle$. Since $\mathbf{n}_{2}=-3 \mathbf{n}_{1}$, the normals (and thus the planes) are parallel.
53. Normal vectors for the planes are $\mathbf{n}_{1}=\langle 1,1,1\rangle$ and $\mathbf{n}_{2}=\langle 1,-1,1\rangle$. The normals are not parallel, so neither are the planes. Furthermore, $\mathbf{n}_{1} \cdot \mathbf{n}_{2}=1-1+1=1 \neq 0$, so the planes aren't perpendicular. The angle between them is given by $\cos \theta=\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|}=\frac{1}{\sqrt{3} \sqrt{3}}=\frac{1}{3} \quad \Rightarrow \quad \theta=\cos ^{-1}\left(\frac{1}{3}\right) \approx 70.5^{\circ}$.
54. The normals are $\mathbf{n}_{1}=\langle 2,-3,4\rangle$ and $\mathbf{n}_{2}=\langle 1,6,4\rangle$ so the planes aren't parallel. Since $\mathbf{n}_{1} \cdot \mathbf{n}_{2}=2-18+16=0$, the normals (and thus the planes) are perpendicular.
55. The normals are $\mathbf{n}_{1}=\langle 1,-4,2\rangle$ and $\mathbf{n}_{2}=\langle 2,-8,4\rangle$. Since $\mathbf{n}_{2}=2 \mathbf{n}_{1}$, the normals (and thus the planes) are parallel.
56. The normal vectors are $\mathbf{n}_{1}=\langle 1,2,2\rangle$ and $\mathbf{n}_{2}=\langle 2,-1,2\rangle$. The normals are not parallel, so neither are the planes. Furthermore, $\mathbf{n}_{1} \cdot \mathbf{n}_{2}=2-2+4=4 \neq 0$, so the planes aren't perpendicular. The angle between them is given by $\cos \theta=\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|}=\frac{4}{\sqrt{9} \sqrt{9}}=\frac{4}{9} \Rightarrow \theta=\cos ^{-1}\left(\frac{4}{9}\right) \approx 63.6^{\circ}$.
57. (a) To find a point on the line of intersection, set one of the variables equal to a constant, say $z=0$. (This will fail if the line of intersection does not cross the $x y$-plane; in that case, try setting x or y equal to 0 .) The equations of the two planes reduce to $x+y=1$ and $x+2 y=1$. Solving these two equations gives $x=1, y=0$. Thus a point on the line is $(1,0,0)$. A vector \mathbf{v} in the direction of this intersecting line is perpendicular to the normal vectors of both planes, so we can take $\mathbf{v}=\mathbf{n}_{1} \times \mathbf{n}_{2}=\langle 1,1,1\rangle \times\langle 1,2,2\rangle=\langle 2-2,1-2,2-1\rangle=\langle 0,-1,1\rangle$. By Equations 2, parametric equations for the line are $x=1, y=-t, z=t$.
(b) The angle between the planes satisfies $\cos \theta=\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|}=\frac{1+2+2}{\sqrt{3} \sqrt{9}}=\frac{5}{3 \sqrt{3}}$. Therefore $\theta=\cos ^{-1}\left(\frac{5}{3 \sqrt{3}}\right) \approx 15.8^{\circ}$.
58. (a) If we set $z=0$ then the equations of the planes reduce to $3 x-2 y=1$ and $2 x+y=3$ and solving these two equations gives $x=1, y=1$. Thus a point on the line of intersection is $(1,1,0)$. A vector \mathbf{v} in the direction of this intersecting line is perpendicular to the normal vectors of both planes, so let $\mathbf{v}=\mathbf{n}_{1} \times \mathbf{n}_{2}=\langle 3,-2,1\rangle \times\langle 2,1,-3\rangle=\langle 5,11,7\rangle$. By Equations 2, parametric equations for the line are $x=1+5 t, y=1+11 t, z=7 t$.
(b) $\cos \theta=\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|}=\frac{6-2-3}{\sqrt{14} \sqrt{14}}=\frac{1}{14} \quad \Rightarrow \quad \theta=\cos ^{-1}\left(\frac{1}{14}\right) \approx 85.9^{\circ}$.
59. Setting $z=0$, the equations of the two planes become $5 x-2 y=1$ and $4 x+y=6$. Solving these two equations gives $x=1, y=2$ so a point on the line of intersection is $(1,2,0)$. A vector \mathbf{v} in the direction of this intersecting line is perpendicular to the normal vectors of both planes. So we can use $\mathbf{v}=\mathbf{n}_{1} \times \mathbf{n}_{2}=\langle 5,-2,-2\rangle \times\langle 4,1,1\rangle=\langle 0,-13,13\rangle$ or equivalently we can take $\mathbf{v}=\langle 0,-1,1\rangle$, and symmetric equations for the line are $x=1, \frac{y-2}{-1}=\frac{z}{1}$ or $x=1, y-2=-z$.
60. If we set $z=0$ then the equations of the planes reduce to $2 x-y-5=0$ and $4 x+3 y-5=0$ and solving these two equations gives $x=2, y=-1$. Thus a point on the line of intersection is $(2,-1,0)$. A vector \mathbf{v} in the direction of this intersecting line is perpendicular to the normal vectors of both planes, so take $\mathbf{v}=\mathbf{n}_{1} \times \mathbf{n}_{2}=\langle 2,-1,-1\rangle \times\langle 4,3,-1\rangle=\langle 4,-2,10\rangle$ or equivalently we can take $\mathbf{v}=\langle 2,-1,5\rangle$. Symmetric equations for the line are $\frac{x-2}{2}=\frac{y+1}{-1}=\frac{z}{5}$.
61. The distance from a point (x, y, z) to $(1,0,-2)$ is $d_{1}=\sqrt{(x-1)^{2}+y^{2}+(z+2)^{2}}$ and the distance from (x, y, z) to $(3,4,0)$ is $d_{2}=\sqrt{(x-3)^{2}+(y-4)^{2}+z^{2}}$. The plane consists of all points (x, y, z) where $d_{1}=d_{2} \quad \Rightarrow \quad d_{1}^{2}=d_{2}^{2} \quad \Leftrightarrow$
$(x-1)^{2}+y^{2}+(z+2)^{2}=(x-3)^{2}+(y-4)^{2}+z^{2} \Leftrightarrow$
$x^{2}-2 x+y^{2}+z^{2}+4 z+5=x^{2}-6 x+y^{2}-8 y+z^{2}+25 \Leftrightarrow 4 x+8 y+4 z=20$ so an equation for the plane is $4 x+8 y+4 z=20$ or equivalently $x+2 y+z=5$.
Alternatively, you can argue that the segment joining points $(1,0,-2)$ and $(3,4,0)$ is perpendicular to the plane and the plane includes the midpoint of the segment.
62. The distance from a point (x, y, z) to $(2,5,5)$ is $d_{1}=\sqrt{(x-2)^{2}+(y-5)^{2}+(z-5)^{2}}$ and the distance from (x, y, z) to $(-6,3,1)$ is $d_{2}=\sqrt{(x+6)^{2}+(y-3)^{2}+(z-1)^{2}}$. The plane consists of all points (x, y, z) where $d_{1}=d_{2} \quad \Rightarrow$ $d_{1}^{2}=d_{2}^{2} \Leftrightarrow(x-2)^{2}+(y-5)^{2}+(z-5)^{2}=(x+6)^{2}+(y-3)^{2}+(z-1)^{2} \Leftrightarrow$
$x^{2}-4 x+y^{2}-10 y+z^{2}-10 z+54=x^{2}+12 x+y^{2}-6 y+z^{2}-2 z+46 \quad \Leftrightarrow \quad 16 x+4 y+8 z=8$ so an equation for the plane is $16 x+4 y+8 z=8$ or equivalently $4 x+y+2 z=2$.
63. The plane contains the points $(a, 0,0),(0, b, 0)$ and $(0,0, c)$. Thus the vectors $\mathbf{a}=\langle-a, b, 0\rangle$ and $\mathbf{b}=\langle-a, 0, c\rangle$ lie in the plane, and $\mathbf{n}=\mathbf{a} \times \mathbf{b}=\langle b c-0,0+a c, 0+a b\rangle=\langle b c, a c, a b\rangle$ is a normal vector to the plane. The equation of the plane is therefore $b c x+a c y+a b z=a b c+0+0$ or $b c x+a c y+a b z=a b c$. Notice that if $a \neq 0, b \neq 0$ and $c \neq 0$ then we can rewrite the equation as $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$. This is a good equation to remember!
64. (a) For the lines to intersect, we must be able to find one value of t and one value of s satisfying the three equations $1+t=2-s, 1-t=s$ and $2 t=2$. From the third we get $t=1$, and putting this in the second gives $s=0$. These values of s and t do satisfy the first equation, so the lines intersect at the point $P_{0}=(1+1,1-1,2(1))=(2,0,2)$.
(b) The direction vectors of the lines are $\langle 1,-1,2\rangle$ and $\langle-1,1,0\rangle$, so a normal vector for the plane is $\langle-1,1,0\rangle \times\langle 1,-1,2\rangle=\langle 2,2,0\rangle$ and it contains the point $(2,0,2)$. Then an equation of the plane is $2(x-2)+2(y-0)+0(z-2)=0 \quad \Leftrightarrow \quad x+y=2$.
65. Two vectors which are perpendicular to the required line are the normal of the given plane, $\langle 1,1,1\rangle$, and a direction vector for the given line, $\langle 1,-1,2\rangle$. So a direction vector for the required line is $\langle 1,1,1\rangle \times\langle 1,-1,2\rangle=\langle 3,-1,-2\rangle$. Thus L is given by $\langle x, y, z\rangle=\langle 0,1,2\rangle+t\langle 3,-1,-2\rangle$, or in parametric form, $x=3 t, y=1-t, z=2-2 t$.
66. Let L be the given line. Then $(1,1,0)$ is the point on L corresponding to $t=0 . L$ is in the direction of $\mathbf{a}=\langle 1,-1,2\rangle$ and $\mathbf{b}=\langle-1,0,2\rangle$ is the vector joining $(1,1,0)$ and $(0,1,2)$. Then
$\mathbf{b}-\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\langle-1,0,2\rangle-\frac{\langle 1,-1,2\rangle \cdot\langle-1,0,2\rangle}{1^{2}+(-1)^{2}+2^{2}}\langle 1,-1,2\rangle=\langle-1,0,2\rangle-\frac{1}{2}\langle 1,-1,2\rangle=\left\langle-\frac{3}{2}, \frac{1}{2}, 1\right\rangle$ is a direction vector for the required line. Thus $2\left\langle-\frac{3}{2}, \frac{1}{2}, 1\right\rangle=\langle-3,1,2\rangle$ is also a direction vector, and the line has parametric equations $x=-3 t$, $y=1+t, z=2+2 t$. (Notice that this is the same line as in Exercise 65.)
67. Let P_{i} have normal vector \mathbf{n}_{i}. Then $\mathbf{n}_{1}=\langle 3,6,-3\rangle, \mathbf{n}_{2}=\langle 4,-12,8\rangle, \mathbf{n}_{3}=\langle 3,-9,6\rangle, \mathbf{n}_{4}=\langle 1,2,-1\rangle$. Now $\mathbf{n}_{1}=3 \mathbf{n}_{4}$, so \mathbf{n}_{1} and \mathbf{n}_{4} are parallel, and hence P_{1} and P_{4} are parallel; similarly P_{2} and P_{3} are parallel because $\mathbf{n}_{2}=\frac{4}{3} \mathbf{n}_{3}$. However, \mathbf{n}_{1} and \mathbf{n}_{2} are not parallel (so not all four planes are parallel). Notice that the point $(2,0,0)$ lies on both P_{1} and P_{4}, so these two planes are identical. The point $\left(\frac{5}{4}, 0,0\right)$ lies on P_{2} but not on P_{3}, so these are different planes.
68. Let L_{i} have direction vector \mathbf{v}_{i}. Rewrite the symmetric equations for L_{3} as $\frac{x-1}{1 / 2}=\frac{y-1}{-1 / 4}=\frac{z+1}{1}$; then $\mathbf{v}_{1}=\langle 6,-3,12\rangle$, $\mathbf{v}_{2}=\langle 2,1,4\rangle, \mathbf{v}_{3}=\left\langle\frac{1}{2},-\frac{1}{4}, 1\right\rangle$, and $\mathbf{v}_{4}=\langle 4,2,8\rangle . \mathbf{v}_{1}=12 \mathbf{v}_{3}$, so L_{1} and L_{3} are parallel. $\mathbf{v}_{4}=2 \mathbf{v}_{2}$, so L_{2} and L_{4} are parallel. (Note that L_{1} and L_{2} are not parallel.) L_{1} contains the point $(1,1,5)$, but this point does not lie on L_{3}, so they're not identical. $(3,1,5)$ lies on L_{4} and also on L_{2} (for $t=1$), so L_{2} and L_{4} are the same line.
69. Let $Q=(1,3,4)$ and $R=(2,1,1)$, points on the line corresponding to $t=0$ and $t=1$. Let $P=(4,1,-2)$. Then $\mathbf{a}=\overrightarrow{Q R}=\langle 1,-2,-3\rangle, \mathbf{b}=\overrightarrow{Q P}=\langle 3,-2,-6\rangle$. The distance is
$d=\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|}=\frac{|\langle 1,-2,-3\rangle \times\langle 3,-2,-6\rangle|}{|\langle 1,-2,-3\rangle|}=\frac{|\langle 6,-3,4\rangle|}{|\langle 1,-2,-3\rangle|}=\frac{\sqrt{6^{2}+(-3)^{2}+4^{2}}}{\sqrt{1^{2}+(-2)^{2}+(-3)^{2}}}=\frac{\sqrt{61}}{\sqrt{14}}=\sqrt{\frac{61}{14}}$.
70. Let $Q=(0,6,3)$ and $R=(2,4,4)$, points on the line corresponding to $t=0$ and $t=1$. Let
$P=(0,1,3)$. Then $\mathbf{a}=\overrightarrow{Q R}=\langle 2,-2,1\rangle$ and $\mathbf{b}=\overrightarrow{Q P}=\langle 0,-5,0\rangle$. The distance is
$d=\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|}=\frac{|\langle 2,-2,1\rangle \times\langle 0,-5,0\rangle|}{|\langle 2,-2,1\rangle|}=\frac{|\langle 5,0,-10\rangle|}{|\langle 2,-2,1\rangle|}=\frac{\sqrt{5^{2}+0^{2}+(-10)^{2}}}{\sqrt{2^{2}+(-2)^{2}+1^{2}}}=\frac{\sqrt{125}}{\sqrt{9}}=\frac{5 \sqrt{5}}{3}$.
71. By Equation 9, the distance is $D=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{|3(1)+2(-2)+6(4)-5|}{\sqrt{3^{2}+2^{2}+6^{2}}}=\frac{|18|}{\sqrt{49}}=\frac{18}{7}$.
72. By Equation 9, the distance is $D=\frac{|1(-6)-2(3)-4(5)-8|}{\sqrt{1^{2}+(-2)^{2}+(-4)^{2}}}=\frac{|-40|}{\sqrt{21}}=\frac{40}{\sqrt{21}}$.
73. Put $y=z=0$ in the equation of the first plane to get the point $(2,0,0)$ on the plane. Because the planes are parallel, the distance D between them is the distance from $(2,0,0)$ to the second plane. By Equation 9,
$D=\frac{|4(2)-6(0)+2(0)-3|}{\sqrt{4^{2}+(-6)^{2}+(2)^{2}}}=\frac{5}{\sqrt{56}}=\frac{5}{2 \sqrt{14}}$ or $\frac{5 \sqrt{14}}{28}$.
74. Put $x=y=0$ in the equation of the first plane to get the point $(0,0,0)$ on the plane. Because the planes are parallel the distance D between them is the distance from $(0,0,0)$ to the second plane $3 x-6 y+9 z-1=0$. By Equation 9,
$D=\frac{|3(0)-6(0)+9(0)-1|}{\sqrt{3^{2}+(-6)^{2}+9^{2}}}=\frac{1}{\sqrt{126}}=\frac{1}{3 \sqrt{14}}$.
75. The distance between two parallel planes is the same as the distance between a point on one of the planes and the other plane.

Let $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ be a point on the plane given by $a x+b y+c z+d_{1}=0$. Then $a x_{0}+b y_{0}+c z_{0}+d_{1}=0$ and the
distance between P_{0} and the plane given by $a x+b y+c z+d_{2}=0$ is, from Equation 9 ,
$D=\frac{\left|a x_{0}+b y_{0}+c z_{0}+d_{2}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{\left|-d_{1}+d_{2}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{\left|d_{1}-d_{2}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$.
76. The planes must have parallel normal vectors, so if $a x+b y+c z+d=0$ is such a plane, then for some $t \neq 0$,
$\langle a, b, c\rangle=t\langle 1,2,-2\rangle=\langle t, 2 t,-2 t\rangle$. So this plane is given by the equation $x+2 y-2 z+k=0$, where $k=d / t$. By Exercise 75, the distance between the planes is $2=\frac{|1-k|}{\sqrt{1^{2}+2^{2}+(-2)^{2}}} \Leftrightarrow 6=|1-k| \quad \Leftrightarrow \quad k=7$ or -5 . So the desired planes have equations $x+2 y-2 z=7$ and $x+2 y-2 z=-5$.
77. $L_{1}: x=y=z \quad \Rightarrow \quad x=y$ (1). $\quad L_{2}: x+1=y / 2=z / 3 \quad \Rightarrow \quad x+1=y / 2 \quad$ (2). The solution of (1) and (2) is $x=y=-2$. However, when $x=-2, x=z \quad \Rightarrow \quad z=-2$, but $x+1=z / 3 \quad \Rightarrow \quad z=-3$, a contradiction. Hence the lines do not intersect. For $L_{1}, \mathbf{v}_{1}=\langle 1,1,1\rangle$, and for $L_{2}, \mathbf{v}_{2}=\langle 1,2,3\rangle$, so the lines are not parallel. Thus the lines are skew lines. If two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew lines would be the same as the distance between these parallel planes. The common normal vector to the planes must be perpendicular to both $\langle 1,1,1\rangle$ and $\langle 1,2,3\rangle$, the direction vectors of the two lines. So set
$\mathbf{n}=\langle 1,1,1\rangle \times\langle 1,2,3\rangle=\langle 3-2,-3+1,2-1\rangle=\langle 1,-2,1\rangle$. From above, we know that $(-2,-2,-2)$ and $(-2,-2,-3)$ are points of L_{1} and L_{2} respectively. So in the notation of Equation $8,1(-2)-2(-2)+1(-2)+d_{1}=0 \quad \Rightarrow \quad d_{1}=0$ and $1(-2)-2(-2)+1(-3)+d_{2}=0 \quad \Rightarrow \quad d_{2}=1$.
By Exercise 75, the distance between these two skew lines is $D=\frac{|0-1|}{\sqrt{1+4+1}}=\frac{1}{\sqrt{6}}$.
Alternate solution (without reference to planes): A vector which is perpendicular to both of the lines is
$\mathbf{n}=\langle 1,1,1\rangle \times\langle 1,2,3\rangle=\langle 1,-2,1\rangle$. Pick any point on each of the lines, say $(-2,-2,-2)$ and $(-2,-2,-3)$, and form the vector $\mathbf{b}=\langle 0,0,1\rangle$ connecting the two points. The distance between the two skew lines is the absolute value of the scalar
projection of \mathbf{b} along \mathbf{n}, that is, $D=\frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|}=\frac{|1 \cdot 0-2 \cdot 0+1 \cdot 1|}{\sqrt{1+4+1}}=\frac{1}{\sqrt{6}}$.
78. First notice that if two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew lines would be the same as the distance between these parallel planes. The common normal vector to the planes must be perpendicular to both $\mathbf{v}_{1}=\langle 1,6,2\rangle$ and $\mathbf{v}_{2}=\langle 2,15,6\rangle$, the direction vectors of the two lines respectively. Thus set $\mathbf{n}=\mathbf{v}_{1} \times \mathbf{v}_{2}=\langle 36-30,4-6,15-12\rangle=\langle 6,-2,3\rangle$. Setting $t=0$ and $s=0$ gives the points $(1,1,0)$ and $(1,5,-2)$. So in the notation of Equation $8,6-2+0+d_{1}=0 \Rightarrow d_{1}=-4$ and $6-10-6+d_{2}=0 \quad \Rightarrow \quad d_{2}=10$.

Then by Exercise 75, the distance between the two skew lines is given by $D=\frac{|-4-10|}{\sqrt{36+4+9}}=\frac{14}{7}=2$.
Alternate solution (without reference to planes): We already know that the direction vectors of the two lines are $\mathbf{v}_{1}=\langle 1,6,2\rangle$ and $\mathbf{v}_{2}=\langle 2,15,6\rangle$. Then $\mathbf{n}=\mathbf{v}_{1} \times \mathbf{v}_{2}=\langle 6,-2,3\rangle$ is perpendicular to both lines. Pick any point on

$$
\begin{array}{rlrl}
f(0,0) & =4 & f(1,-1) & =11 \\
f\left(1, \frac{1}{4}\right) & =4.75 & f(-1,1) & =7 \\
f\left(-1, \frac{1}{4}\right) & =4.75 & f(0,1) & =8
\end{array}
$$

The absolute minimum is at $(0,0)$ since gives the smallest function value and the absolute maximum occurs at $(1,-1)$ and $(-1,-1)$ since these two points give the largest function value.

Here is a sketch of the function on the rectangle for reference purposes.

As this example has shown these can be very long problems on occasion. Let's take a look at an easier, well shorter anyway, problem with a different kind of boundary.

Example 2 Find the absolute minimum and absolute maximum of $f(x, y)=2 x^{2}-y^{2}+6 y$ on the disk of radius $4, x^{2}+y^{2} \leq 16$

First note that a disk of radius 4 is given by the inequality in the problem statement. The "less than" inequality is included to get the interior of the disk and the equal sign is included to get the boundary. Of course, this also means that the boundary of the disk is a circle of radius 4.

Let's first find the critical points of the function that lies inside the disk. This will require the following two first order partial derivatives.

$$
f_{x}=4 x f_{y}=-2 y+6
$$

To find the critical points we'll need to solve the following system.

$$
\begin{aligned}
4 x & =0 \\
-2 y+6 & =0
\end{aligned}
$$

This is actually a fairly simple system to solve however. The first equation tells us that $x=0$ and the second tells us that $y=3$. So, the only critical point for this function is $(0,3)$ and this is inside the disk of radius 4 . The function value at this critical point is,

$$
f(0,3)=9
$$

Now we need to look at the boundary. This one will be somewhat different from the previous example. In this case we don't have fixed values of x and y on the boundary. Instead we have,

$$
x^{2}+y^{2}=16
$$

We can solve this for x^{2} and plug this into the x^{2} in $f(x, y)$ to get a function of y as follows.

$$
\begin{gathered}
x^{2}=16-y^{2} \\
g(y)=2\left(16-y^{2}\right)-y^{2}+6 y=32-3 y^{2}+6 y
\end{gathered}
$$

We will need to find the absolute extrema of this function on the range $-4 \leq y \leq 4$ (this is the range of y 's for the disk....). We'll first need the critical points of this function.

$$
g^{\prime}(y)=-6 y+6 \quad \Rightarrow \quad y=1
$$

The value of this function at the critical point and the endpoints are,

$$
g(-4)=-40 \quad g(4)=8 \quad g(1)=35
$$

Unlike the first example we will still need to find the values of x that correspond to these. We can do this by plugging the value of y into our equation for the circle and solving for x.

$$
\begin{array}{llll}
y=-4: & x^{2}=16-16=0 & \Rightarrow & x=0 \\
y=4: & x^{2}=16-16=0 & \Rightarrow & x=0 \\
y=1: & x^{2}=16-1=15 & \Rightarrow & x= \pm \sqrt{15}= \pm 3.87
\end{array}
$$

The function values for $g(y)$ then correspond to the following function values for $f(x, y)$.

$$
\begin{array}{cll}
g(-4)=-40 & \Rightarrow & f(0,-4)=-40 \\
g(4)=8 & \Rightarrow & f(0,4)=8 \\
g(1)=35 & \Rightarrow & f(-\sqrt{15}, 1)=35 \text { and } f(\sqrt{15}, 1)=35
\end{array}
$$

Note that the third one actually corresponded to two different values for $f(x, y)$ since that y also produced two different values of x.
So, comparing these values to the value of the function at the critical point of $f(x, y)$ that we found earlier we can see that the absolute minimum occurs at $(0,-4)$ while the absolute maximum occurs twice at $(-\sqrt{15}, 1)$ and $(\sqrt{15}, 1)$.

Here is a sketch of the region for reference purposes.

In both of these examples one of the absolute extrema actually occurred at more than one place. Sometimes this will happen and sometimes it won't so don't read too much into the fact that it happened in both examples given here.

Also note that, as we've seen, absolute extrema will often occur on the boundaries of these regions, although they don't have to occur at the boundaries. Had we given much more complicated examples with multiple critical points we would have seen examples where the absolute extrema occurred interior to the region and not on the boundary.

1. Find the absolute minimum and absolute maximum of $f(x, y)=192 x^{3}+y^{2}-4 x y^{2}$ on the triangle with vertices $(0,0),(4,2)$ and $(-2,2)$.

We'll need the first order derivatives to start the problem off. Here they are,

$$
f_{x}=576 x^{2}-4 y^{2} \quad f_{y}=2 y-8 x y
$$

We need to find the critical points for this problem. That means solving the following system.

$$
\begin{aligned}
f_{x}=0 & : \quad 576 x^{2}-4 y^{2}=0 \\
f_{y}=0 & : \quad 2 y(1-4 x)=0 \quad \rightarrow \quad y=0 \text { or } x=\frac{1}{4}
\end{aligned}
$$

So, we have two possible options from the second equation. We can plug each into the first equation to get the critical points for the equation.
$y=0: 576 x^{2}=0 \quad \rightarrow \quad x=0 \quad \Rightarrow \quad(0,0)$
$x=\frac{1}{4}: 36-4 y^{2}=0 \quad \rightarrow \quad y= \pm 3 \quad \Rightarrow \quad\left(\frac{1}{4}, 3\right) \quad$ and $\quad\left(\frac{1}{4},-3\right)$
Okay, we have the three critical points listed above. Also recall that we only use critical points that are actually in the region we are working with. In this case, the last two have y values that clearly are out of the region (we've sketched the region in the next step if you aren't sure you believe this!) and so we can ignore them.

Therefore, the only critical point from this list that we need to use is the first. Note as well that, in this case, this also happens to be one of the points that define the boundary of the region. This will happen on occasion but won't always.

So, we'll need the function value for the only critical point that is actually in our region. Here is that value,

$$
f(0,0)=0
$$

Now, we know that absolute extrema can occur on the boundary. So, let's start off with a quick sketch of the region we're working on.

Each of the sides of the triangle can then be defined as follows.
Top : $y=2, \quad-2 \leq x \leq 4$
Right : $y=\frac{1}{2} x, \quad 0 \leq x \leq 4$
Left : $y=-x, \quad-2 \leq x \leq 0$
Now we need to analyze each of these sides to get potential absolute extrema for $f(x, y)$ that might occur on the boundary.
Let's first check out the top : $y=2,-2 \leq x \leq 4$.

We'll need to identify the points along the top that could be potential absolute extrema for $f(x, y)$. This, in essence, requires us to find the potential absolute extrema of the following equation on the interval $-2 \leq x \leq 4$.

The critical point(s) for $g(x)$ are,

$$
g^{\prime}(x)=576 x^{2}-16=0 \quad \rightarrow \quad x= \pm \frac{1}{6}
$$

So, these two points as well as the x limits for the top give the following four points that are potential absolute extrema for $f(x, y)$.

$$
\begin{equation*}
\left(\frac{1}{6}, 2\right) \quad\left(-\frac{1}{6}, 2\right) \quad(-2,2) \tag{4,2}
\end{equation*}
$$

Recall that, in this step, we are assuming that $y=2$! So, the next set of potential absolute extrema for $f(x, y)$ are then,

$$
f\left(\frac{1}{6}, 2\right)=\frac{20}{9} \quad f\left(-\frac{1}{6}, 2\right)=\frac{52}{9} \quad f(-2,2)=-1,500 \quad f(4,2)=12,228
$$

Next let's check out the right side : $y=\frac{1}{2} x, 0 \leq x \leq 4$. For this side we'll need to identify possible absolute extrema of the following function on the interval $0 \leq x \leq 4$.

$$
g(x)=f\left(x, \frac{1}{2} x\right)=\frac{1}{4} x^{2}+191 x^{3}
$$

The critical point(s) for the $g(x)$ from this step are,

$$
g^{\prime}(x)=\frac{1}{2} x+573 x^{2}=x\left(\frac{1}{2}+573 x\right)=0 \quad \rightarrow \quad x=0, x=-\frac{1}{1146}
$$

Now, recall what we are restricted to the interval $0 \leq x \leq 4$ for this portion of the problem and so the second critical point above will not be used as it lies outside this interval.

So, the single point from above that is in the interval $0 \leq x \leq 4$ as well as the x limits for the right give the following two points that are potential absolute extrema for $f(x, y)$.

$$
(0,0) \quad(4,2)
$$

Recall that, in this step, we are assuming that $y=\frac{1}{2} x$! Also note that, in this case, one of the critical points ended up also being one of the endpoints.

Therefore, the next set of potential absolute extrema for $f(x, y)$ are then,

$$
f(0,0)=0 \quad f(4,2)=12,228
$$

Before proceeding to the next step note that both of these have already appeared in previous steps. This will happen on occasion but we can't, in many cases, expect this to happen so we do need to go through and do the work for each boundary.

The main exception to this is usually the endpoints of our intervals as they will always be shared in two of the boundary checks and so, once done, don't really need to be checked again. We just included the endpoints here for completeness.

Finally, let's check out the left side : $y=-x,-2 \leq x \leq 0$. For this side we'll need to identify possible absolute extrema of the following function on the interval $-2 \leq x \leq 0$.

$$
g(x)=f(x,-x)=x^{2}+188 x^{3}
$$

The critical point(s) for the $g(x)$ from this step are,

$$
g^{\prime}(x)=2 x+564 x^{2}=2 x(1+282 x)=0 \quad \rightarrow \quad x=0, \quad x=-\frac{1}{282}
$$

Both of these are in the interval $-2 \leq x \leq 0$ that we are restricted to for this portion of the problem.
So, the two points from above as well as the x limits for the right give the following three points that are potential absolute extrema for $f(x, y)$

$$
\left(-\frac{1}{282}, \frac{1}{282}\right) \quad(0,0) \quad(-2,2)
$$

Recall that, in this step we are assuming that $y=-x$! Also note that, in this case, one of the critical points ended up also being one of the endpoints.

Therefore, the next set of potential absolute extrema for $f(x, y)$ are then,

$$
f\left(-\frac{1}{282}, \frac{1}{282}\right)=\frac{1}{238,572} \quad f(0,0)=0 \quad f(-2,2)=-1,500
$$

As with the previous step we can note that both of the end points above have already occurred previously in the problem and didn't really need to be checked here. They were just included for completeness.

Okay, in summary, here are all the potential absolute extrema and their function values for this function on the region we are working on.

$$
\begin{aligned}
f\left(\frac{1}{6}, 2\right) & =\frac{20}{9} & f\left(-\frac{1}{6}, 2\right) & =\frac{52}{9}
\end{aligned} \quad f(-2,2)=-1,500 \quad f(4,2)=12,228
$$

From this list we can see that the absolute maximum of the function will be 12,228 which occurs at $(4,2)$ and the absolute minimum of the function will be $-1,500$ which occurs at $(-2,2)$.
2. Find the absolute minimum and absolute maximum of $f(x, y)=\left(9 x^{2}-1\right)(1+4 y)$ on the rectangle given by $-2 \leq x \leq 3$, $-1 \leq y \leq 4$.

We'll need the first order derivatives to start the problem off. Here they are,

$$
f_{x}=18 x(1+4 y) \quad f_{y}=4\left(9 x^{2}-1\right)
$$

We need to find the critical points for this problem. That means solving the following system.

$$
\begin{aligned}
f_{x}=0 & : \quad 18 x(1+4 y)=0 \\
f_{y}=0 & : \quad 4\left(9 x^{2}-1\right)=0 \quad \rightarrow \quad x= \pm \frac{1}{3}
\end{aligned}
$$

So, we have two possible options from the second equation. We can plug each into the first equation to get the critical points for the equation.
$x=\frac{1}{3}: 6(1+4 y)=0 \quad \rightarrow \quad y=-\frac{1}{4} \quad \Rightarrow \quad\left(\frac{1}{3},-\frac{1}{4}\right)$
$x=-\frac{1}{3}:-6(1+4 y)=0 \quad \rightarrow \quad y=-\frac{1}{4} \quad \Rightarrow \quad\left(-\frac{1}{3},-\frac{1}{4}\right)$
Both of these critical points are in the region we are interested in and so we'll need the function evaluated at both of them. Here are those values,

$$
f\left(\frac{1}{3},-\frac{1}{4}\right)=0 \quad f\left(-\frac{1}{3},-\frac{1}{4}\right)=0
$$

Now, we know that absolute extrema can occur on the boundary. So, let's start off with a quick sketch of the region we're working on.

Each of the sides of the rectangle can then be defined as follows.
Top : $y=4, \quad-2 \leq x \leq 3$
Bottom : $y=-1, \quad-2 \leq x \leq 3$
Right : $x=3, \quad-1 \leq y \leq 4$
Left : $x=-2, \quad-1 \leq y \leq 4$
Now we need to analyze each of these sides to get potential absolute extrema for $f(x, y)$ that might occur on the boundary.
Let's first check out the top : $y=4,-2 \leq x \leq 3$.

We'll need to identify the points along the top that could be potential absolute extrema for $f(x, y)$. This, in essence, requires us to find the potential absolute extrema of the following equation on the interval $-2 \leq x \leq 3$.

The critical point(s) forg (x) are,

$$
g^{\prime}(x)=306 x=0 \quad \rightarrow \quad x=0
$$

This critical point is in the interval we are working on so, this point as well as the x limits for the top give the following three points that are potential absolute extrema for $f(x, y)$

$$
\begin{equation*}
(0,4) \quad(-2,4) \tag{3,4}
\end{equation*}
$$

Recall that, in this step, we are assuming that $y=4$! So, the next set of potential absolute extrema for $f(x, y)$ are then,

$$
f(0,4)=-17 \quad f(-2,4)=595 \quad f(3,4)=1360
$$

Next, let's check out the bottom : $y=-1, \quad-2 \leq x \leq 3$. For this side we'll need to identify possible absolute extrema of the following function on the interval $-2 \leq x \leq 3$.

$$
g(x)=f(x,-1)=-3\left(-1+9 x^{2}\right)
$$

The critical point(s) for the $g(x)$ from this step are,

$$
g^{\prime}(x)=-54 x=0 \quad \rightarrow \quad x=0
$$

This critical point is in the interval we are working on so, this point as well as the x limits for the bottom give the following three points that are potential absolute extrema for $f(x, y)$.

$$
(0,-1) \quad(-2,-1) \quad(3,-1)
$$

Recall that, in this step, we are assuming that $y=-1$! So, the next set of potential absolute extrema for $f(x, y)$ are then,

$$
f(0,-1)=3 \quad f(-2,-1)=-105 \quad f(3,-1)=-240
$$

Let's now check out the right side : $x=3, \quad-1 \leq y \leq 4$. For this side we'll need to identify possible absolute extrema of the following function on the interval $-1 \leq y \leq 4$.

$$
h(y)=f(3, y)=80(1+4 y)
$$

The derivative of the $h(y)$ from this step is,

$$
h^{\prime}(y)=320
$$

In this case there are no critical points of the function along this boundary. So, only the limits for the right side are potential absolute extrema for $f(x, y)$.

$$
(3,-1) \quad(3,4)
$$

Recall that, in this step, we are assuming that $x=3$! Therefore, the next set of potential absolute extrema for $f(x, y)$ are then,

$$
f(3,-1)=-240 \quad f(3,4)=1360
$$

Before proceeding to the next step let's note that both of these points have already been listed in previous steps and so did not really need to be written down here. This will always happen with boundary points (as these are here). Boundary points will always show up in multiple boundary steps.-

Finally, let's check out the left side : $x=-2, \quad-1 \leq y \leq 4$. For this side we'll need to identify possible absolute extrema of the following function on the interval $-1 \leq y \leq 4$.

$$
h(y)=f(-2, y)=35(1+4 y)
$$

The derivative of the $h(y)$ from this step is,

$$
h^{\prime}(y)=140
$$

In this case there are no critical points of the function along this boundary. So, we only the limits for the right side are potential absolute extrema for $f(x, y)$.

$$
(-2,-1) \quad(-2,4)
$$

Recall that, in this step, we are assuming that $x=-2$! Therefore, the next set of potential absolute extrema for $f(x, y)$ are then,

$$
f(-2,-1)=-105 \quad f(-2,4)=595
$$

As with the previous step both of these are boundary points and have appeared in previous steps. They were simply listed here for completeness.

Okay, in summary, here are all the potential absolute extrema and their function values for this function on the region we are working on.

$$
\begin{array}{rlrl}
f(0,4) & =-17 & f(-2,4) & =595 \\
f(0,-1) & =3 & f(-2,-1) & =-105
\end{array} r(3,4)=1360 ~ 子(3,-1)=-240
$$

From this list we can see that the absolute maximum of the function will be 1360 which occurs at $(3,4)$ and the absolute minimum of the function will be -240 which occurs at $(3,-1)$.

The solution to Example 9 should be compared to the one in Example 4 in Section 14.3.

$$
\frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \quad \frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}
$$

Again, a version of the Implicit Function Theorem stipulates conditions under which our assumption is valid: If F is defined within a sphere containing (a, b, c), where $F(a, b, c)=0, F_{z}(a, b, c) \neq 0$, and F_{x}, F_{y}, and F_{z} are continuous inside the sphere, then the equation $F(x, y, z)=0$ defines z as a function of x and y near the point (a, b, c) and this function is differentiable, with partial derivatives given by 7 .

EXAMPLE 9 Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $x^{3}+y^{3}+z^{3}+6 x y z=1$.
SOLUTION Let $F(x, y, z)=x^{3}+y^{3}+z^{3}+6 x y z-1$. Then, from Equations 7, we have

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{3 x^{2}+6 y z}{3 z^{2}+6 x y}=-\frac{x^{2}+2 y z}{z^{2}+2 x y} \\
& \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{3 y^{2}+6 x z}{3 z^{2}+6 x y}=-\frac{y^{2}+2 x z}{z^{2}+2 x y}
\end{aligned}
$$

14.5 Exercises

1-6 Use the Chain Rule to find $d z / d t$ orrest
$\sqrt{1} z=x^{2}+y^{2}+x y, \quad x=\sin t, \quad y=e^{t}$
2. $z=\cos (x+4 y), \quad x=5 t^{4}, \quad y=1 / t$
3. $z=\sqrt{1+x^{2}+y^{2}}, \quad x=\ln t, \quad y=\cos t$
4. $z=\tan ^{-1}(y / x), \quad x=e^{t}, \quad y=1-e^{-t}$

7-12 Use the Chain Rule to find $\partial z / \partial s$ and $\partial z / \partial t$.

13. If $z=f(x, y)$, where f is differentiable, and

$$
\begin{array}{rlrl}
x & =g(t) & y & =h(t) \\
g(3) & =2 & h(3) & =7 \\
g^{\prime}(3) & =5 & h^{\prime}(3) & =-4 \\
f_{x}(2,7) & =6 & f_{y}(2,7) & =-8
\end{array}
$$

find $d z / d t$ when $t=3$.
\square

1. Homework Hints available at stewartcalculus.com

14.5 The Chain Rule

1. $z=x^{2}+y^{2}+x y, x=\sin t, y=e^{t} \quad \Rightarrow \quad \frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}=(2 x+y) \cos t+(2 y+x) e^{t}$
2. $z=\cos (x+4 y), x=5 t^{4}, y=1 / t \Rightarrow$

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}=-\sin (x+4 y)(1)\left(20 t^{3}\right)+[-\sin (x+4 y)(4)]\left(-t^{-2}\right) \\
& =-20 t^{3} \sin (x+4 y)+\frac{4}{t^{2}} \sin (x+4 y)=\left(\frac{4}{t^{2}}-20 t^{3}\right) \sin (x+4 y)
\end{aligned}
$$

3. $z=\sqrt{1+x^{2}+y^{2}}, x=\ln t, y=\cos t \Rightarrow$

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}=\frac{1}{2}\left(1+x^{2}+y^{2}\right)^{-1 / 2}(2 x) \cdot \frac{1}{t}+\frac{1}{2}\left(1+x^{2}+y^{2}\right)^{-1 / 2}(2 y)(-\sin t)=\frac{1}{\sqrt{1+x^{2}+y^{2}}}\left(\frac{x}{t}-y \sin t\right)
$$

4. $z=\tan ^{-1}(y / x), x=e^{t}, y=1-e^{-t} \Rightarrow$

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}=\frac{1}{1+(y / x)^{2}}\left(-y x^{-2}\right) \cdot e^{t}+\frac{1}{1+(y / x)^{2}}(1 / x) \cdot\left(-e^{-t}\right)(-1) \\
& =-\frac{y}{x^{2}+y^{2}} \cdot e^{t}+\frac{1}{x+y^{2} / x} \cdot e^{-t}=\frac{x e^{-t}-y e^{t}}{x^{2}+y^{2}}
\end{aligned}
$$

5. $w=x e^{y / z}, x=t^{2}, y=1-t, z=1+2 t \Rightarrow$

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}=e^{y / z} \cdot 2 t+x e^{y / z}\left(\frac{1}{z}\right) \cdot(-1)+x e^{y / z}\left(-\frac{y}{z^{2}}\right) \cdot 2=e^{y / z}\left(2 t-\frac{x}{z}-\frac{2 x y}{z^{2}}\right)
$$

6. $w=\ln \sqrt{x^{2}+y^{2}+z^{2}}=\frac{1}{2} \ln \left(x^{2}+y^{2}+z^{2}\right), x=\sin t, y=\cos t, z=\tan t \Rightarrow$

$$
\begin{aligned}
\frac{d w}{d t} & =\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}=\frac{1}{2} \cdot \frac{2 x}{x^{2}+y^{2}+z^{2}} \cdot \cos t+\frac{1}{2} \cdot \frac{2 y}{x^{2}+y^{2}+z^{2}} \cdot(-\sin t)+\frac{1}{2} \cdot \frac{2 z}{x^{2}+y^{2}+z^{2}} \cdot \sec ^{2} t \\
& =\frac{x \cos t-y \sin t+z \sec ^{2} t}{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

7. $z=x^{2} y^{3}, x=s \cos t, y=s \sin t \Rightarrow$

$$
\begin{aligned}
& \frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}=2 x y^{3} \cos t+3 x^{2} y^{2} \sin t \\
& \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}=\left(2 x y^{3}\right)(-s \sin t)+\left(3 x^{2} y^{2}\right)(s \cos t)=-2 s x y^{3} \sin t+3 s x^{2} y^{2} \cos t
\end{aligned}
$$

8. $z=\arcsin (x-y), \quad x=s^{2}+t^{2}, \quad y=1-2 s t \Rightarrow$

$$
\begin{aligned}
& \frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}=\frac{1}{\sqrt{1-(x-y)^{2}}}(1) \cdot 2 s+\frac{1}{\sqrt{1-(x-y)^{2}}}(-1) \cdot(-2 t)=\frac{2 s+2 t}{\sqrt{1-(x-y)^{2}}} \\
& \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}=\frac{1}{\sqrt{1-(x-y)^{2}}}(1) \cdot 2 t+\frac{1}{\sqrt{1-(x-y)^{2}}}(-1) \cdot(-2 s)=\frac{2 s+2 t}{\sqrt{1-(x-y)^{2}}}
\end{aligned}
$$

9. $z=\sin \theta \cos \phi, \quad \theta=s t^{2}, \quad \phi=s^{2} t \Rightarrow$

$$
\begin{aligned}
& \frac{\partial z}{\partial s}=\frac{\partial z}{\partial \theta} \frac{\partial \theta}{\partial s}+\frac{\partial z}{\partial \phi} \frac{\partial \phi}{\partial s}=(\cos \theta \cos \phi)\left(t^{2}\right)+(-\sin \theta \sin \phi)(2 s t)=t^{2} \cos \theta \cos \phi-2 s t \sin \theta \sin \phi \\
& \frac{\partial z}{\partial t}=\frac{\partial z}{\partial \theta} \frac{\partial \theta}{\partial t}+\frac{\partial z}{\partial \phi} \frac{\partial \phi}{\partial t}=(\cos \theta \cos \phi)(2 s t)+(-\sin \theta \sin \phi)\left(s^{2}\right)=2 s t \cos \theta \cos \phi-s^{2} \sin \theta \sin \phi
\end{aligned}
$$

10. $z=e^{x+2 y}, \quad x=s / t, \quad y=t / s \quad \Rightarrow$

$$
\begin{aligned}
& \frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}=\left(e^{x+2 y}\right)(1 / t)+\left(2 e^{x+2 y}\right)\left(-t s^{-2}\right)=e^{x+2 y}\left(\frac{1}{t}-\frac{2 t}{s^{2}}\right) \\
& \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}=\left(e^{x+2 y}\right)\left(-s t^{-2}\right)+\left(2 e^{x+2 y}\right)(1 / s)=e^{x+2 y}\left(\frac{2}{s}-\frac{s}{t^{2}}\right)
\end{aligned}
$$

11. $z=e^{r} \cos \theta, r=s t, \theta=\sqrt{s^{2}+t^{2}} \Rightarrow$

$$
\begin{aligned}
\frac{\partial z}{\partial s} & =\frac{\partial z}{\partial r} \frac{\partial r}{\partial s}+\frac{\partial z}{\partial \theta} \frac{\partial \theta}{\partial s}=e^{r} \cos \theta \cdot t+e^{r}(-\sin \theta) \cdot \frac{1}{2}\left(s^{2}+t^{2}\right)^{-1 / 2}(2 s)=t e^{r} \cos \theta-e^{r} \sin \theta \cdot \frac{s}{\sqrt{s^{2}+t^{2}}} \\
& =e^{r}\left(t \cos \theta-\frac{s}{\sqrt{s^{2}+t^{2}}} \sin \theta\right) \\
\frac{\partial z}{\partial t} & =\frac{\partial z}{\partial r} \frac{\partial r}{\partial t}+\frac{\partial z}{\partial \theta} \frac{\partial \theta}{\partial t}=e^{r} \cos \theta \cdot s+e^{r}(-\sin \theta) \cdot \frac{1}{2}\left(s^{2}+t^{2}\right)^{-1 / 2}(2 t)=s e^{r} \cos \theta-e^{r} \sin \theta \cdot \frac{t}{\sqrt{s^{2}+t^{2}}} \\
& =e^{r}\left(s \cos \theta-\frac{t}{\sqrt{s^{2}+t^{2}}} \sin \theta\right)
\end{aligned}
$$

12. $z=\tan (u / v), u=2 s+3 t, \quad v=3 s-2 t \quad \Rightarrow$

$$
\begin{aligned}
\frac{\partial z}{\partial s} & =\frac{\partial z}{\partial u} \frac{\partial u}{\partial s}+\frac{\partial z}{\partial v} \frac{\partial v}{\partial s}=\sec ^{2}(u / v)(1 / v) \cdot 2+\sec ^{2}(u / v)\left(-u v^{-2}\right) \cdot 3 \\
& =\frac{2}{v} \sec ^{2}\left(\frac{u}{v}\right)-\frac{3 u}{v^{2}} \sec ^{2}\left(\frac{u}{v}\right)=\frac{2 v-3 u}{v^{2}} \sec ^{2}\left(\frac{u}{v}\right) \\
\frac{\partial z}{\partial t} & =\frac{\partial z}{\partial u} \frac{\partial u}{\partial t}+\frac{\partial z}{\partial v} \frac{\partial v}{\partial t}=\sec ^{2}(u / v)(1 / v) \cdot 3+\sec ^{2}(u / v)\left(-u v^{-2}\right) \cdot(-2) \\
& =\frac{3}{v} \sec ^{2}\left(\frac{u}{v}\right)+\frac{2 u}{v^{2}} \sec ^{2}\left(\frac{u}{v}\right)=\frac{2 u+3 v}{v^{2}} \sec ^{2}\left(\frac{u}{v}\right)
\end{aligned}
$$

13. When $t=3, x=g(3)=2$ and $y=h(3)=7$. By the Chain Rule (2),

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=f_{x}(2,7) g^{\prime}(3)+f_{y}(2,7) h^{\prime}(3)=(6)(5)+(-8)(-4)=62
$$

14. By the Chain Rule (3), $\frac{\partial W}{\partial s}=\frac{\partial W}{\partial u} \frac{\partial u}{\partial s}+\frac{\partial W}{\partial v} \frac{\partial v}{\partial s}$. Then

$$
\begin{aligned}
W_{s}(1,0) & =F_{u}(u(1,0), v(1,0)) u_{s}(1,0)+F_{v}(u(1,0), v(1,0)) v_{s}(1,0)=F_{u}(2,3) u_{s}(1,0)+F_{v}(2,3) v_{s}(1,0) \\
& =(-1)(-2)+(10)(5)=52
\end{aligned}
$$

Similarly, $\frac{\partial W}{\partial t}=\frac{\partial W}{\partial u} \frac{\partial u}{\partial t}+\frac{\partial W}{\partial v} \frac{\partial v}{\partial t} \Rightarrow$
$W_{t}(1,0)=F_{u}(u(1,0), v(1,0)) u_{t}(1,0)+F_{v}(u(1,0), v(1,0)) v_{t}(1,0)=F_{u}(2,3) u_{t}(1,0)+F_{v}(2,3) v_{t}(1,0)$ $=(-1)(6)+(10)(4)=34$
14.6 Exercises

11. $f(x, y)=e^{x} \sin y \Rightarrow \nabla f(x, y)=\left\langle e^{x} \sin y, e^{x} \cos y\right\rangle, \nabla f(0, \pi / 3)=\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle$, and a unit vector in the direction of \mathbf{v} is $\mathbf{u}=\frac{1}{\sqrt{(-6)^{2}+8^{2}}}\langle-6,8\rangle=\frac{1}{10}\langle-6,8\rangle=\left\langle-\frac{3}{5}, \frac{4}{5}\right\rangle$, so $D_{\mathbf{u}} f(0, \pi / 3)=\nabla f(0, \pi / 3) \cdot \mathbf{u}=\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle \cdot\left\langle-\frac{3}{5}, \frac{4}{5}\right\rangle=-\frac{3 \sqrt{3}}{10}+\frac{4}{10}=\frac{4-3 \sqrt{3}}{10}$.
12. $f(x, y)=\frac{x}{x^{2}+y^{2}} \Rightarrow \nabla f(x, y)=\left\langle\frac{\left(x^{2}+y^{2}\right)(1)-x(2 x)}{\left(x^{2}+y^{2}\right)^{2}}, \frac{0-x(2 y)}{\left(x^{2}+y^{2}\right)^{2}}\right\rangle=\left\langle\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}},-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}\right\rangle$, $\nabla f(1,2)=\left\langle\frac{3}{25},-\frac{4}{25}\right\rangle$, and a unit vector in the direction of $\mathbf{v}=\langle 3,5\rangle$ is $\mathbf{u}=\frac{1}{\sqrt{9+25}}\langle 3,5\rangle=\left\langle\frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}}\right\rangle$, so $D_{\mathbf{u}} f(1,2)=\nabla f(1,2) \cdot \mathbf{u}=\left\langle\frac{3}{25},-\frac{4}{25}\right\rangle \cdot\left\langle\frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}}\right\rangle=\frac{9}{25 \sqrt{34}}-\frac{20}{25 \sqrt{34}}=-\frac{11}{25 \sqrt{34}}$.
13. $g(p, q)=p^{4}-p^{2} q^{3} \Rightarrow \nabla g(p, q)=\left(4 p^{3}-2 p q^{3}\right) \mathbf{i}+\left(-3 p^{2} q^{2}\right) \mathbf{j}, \nabla g(2,1)=28 \mathbf{i}-12 \mathbf{j}$, and a unit vector in the direction of \mathbf{v} is $\mathbf{u}=\frac{1}{\sqrt{1^{2}+3^{2}}}(\mathbf{i}+3 \mathbf{j})=\frac{1}{\sqrt{10}}(\mathbf{i}+3 \mathbf{j})$, so
$D_{\mathbf{u}} g(2,1)=\nabla g(2,1) \cdot \mathbf{u}=(28 \mathbf{i}-12 \mathbf{j}) \cdot \frac{1}{\sqrt{10}}(\mathbf{i}+3 \mathbf{j})=\frac{1}{\sqrt{10}}(28-36)=-\frac{8}{\sqrt{10}}$ or $-\frac{4 \sqrt{10}}{5}$.

SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR $\quad \square \quad 43$
14. $g(r, s)=\tan ^{-1}(r s) \Rightarrow \nabla g(r, s)=\left(\frac{1}{1+(r s)^{2}} \cdot s\right) \mathbf{i}+\left(\frac{1}{1+(r s)^{2}} \cdot r\right) \mathbf{j}=\frac{s}{1+r^{2} s^{2}} \mathbf{i}+\frac{r}{1+r^{2} s^{2}} \mathbf{j}$,
$\nabla g(1,2)=\frac{2}{5} \mathbf{i}+\frac{1}{5} \mathbf{j}$, and a unit vector in the direction of \mathbf{v} is $\mathbf{u}=\frac{1}{\sqrt{5^{2}+10^{2}}}(5 \mathbf{i}+10 \mathbf{j})=\frac{1}{5 \sqrt{5}}(5 \mathbf{i}+10 \mathbf{j})=\frac{1}{\sqrt{5}} \mathbf{i}+\frac{2}{\sqrt{5}} \mathbf{j}$, so $D_{\mathbf{u}} g(1,2)=\nabla g(1,2) \cdot \mathbf{u}=\left(\frac{2}{5} \mathbf{i}+\frac{1}{5} \mathbf{j}\right) \cdot\left(\frac{1}{\sqrt{5}} \mathbf{i}+\frac{2}{\sqrt{5}} \mathbf{j}\right)=\frac{2}{5 \sqrt{5}}+\frac{2}{5 \sqrt{5}}=\frac{4}{5 \sqrt{5}}$ or $\frac{4 \sqrt{5}}{25}$.
15. $f(x, y, z)=x e^{y}+y e^{z}+z e^{x} \Rightarrow \nabla f(x, y, z)=\left\langle e^{y}+z e^{x}, x e^{y}+e^{z}, y e^{z}+e^{x}\right\rangle, \nabla f(0,0,0)=\langle 1,1,1\rangle$, and a unit vector in the direction of \mathbf{v} is $\mathbf{u}=\frac{1}{\sqrt{25+1+4}}\langle 5,1,-2\rangle=\frac{1}{\sqrt{30}}\langle 5,1,-2\rangle$, so
$D_{\mathbf{u}} f(0,0,0)=\nabla f(0,0,0) \cdot \mathbf{u}=\langle 1,1,1\rangle \cdot \frac{1}{\sqrt{30}}\langle 5,1,-2\rangle=\frac{4}{\sqrt{30}}$.
16. $f(x, y, z)=\sqrt{x y z} \Rightarrow$
$\nabla f(x, y, z)=\left\langle\frac{1}{2}(x y z)^{-1 / 2} \cdot y z, \frac{1}{2}(x y z)^{-1 / 2} \cdot x z, \frac{1}{2}(x y z)^{-1 / 2} \cdot x y\right\rangle=\left\langle\frac{y z}{2 \sqrt{x y z}}, \frac{x z}{2 \sqrt{x y z}}, \frac{x y}{2 \sqrt{x y z}}\right\rangle$,
$\nabla f(3,2,6)=\left\langle\frac{12}{2 \sqrt{36}}, \frac{18}{2 \sqrt{36}}, \frac{6}{2 \sqrt{36}}\right\rangle=\left\langle 1, \frac{3}{2}, \frac{1}{2}\right\rangle$, and a unit vector in the
direction of \mathbf{v} is $\mathbf{u}=\frac{1}{\sqrt{1+4+4}}\langle-1,-2,2\rangle=\left\langle-\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right\rangle$, so
$D_{\mathbf{u}} f(3,2,6)=\nabla f(3,2,6) \cdot \mathbf{u}=\left\langle 1, \frac{3}{2}, \frac{1}{2}\right\rangle \cdot\left\langle-\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right\rangle=-\frac{1}{3}-1+\frac{1}{3}=-1$.
19. $f(x, y)=\sqrt{x y} \Rightarrow \nabla f(x, y)=\left\langle\frac{1}{2}(x y)^{-1 / 2}(y), \frac{1}{2}(x y)^{-1 / 2}(x)\right\rangle=\left\langle\frac{y}{2 \sqrt{x y}}, \frac{x}{2 \sqrt{x y}}\right\rangle$, so $\nabla f(2,8)=\left\langle 1, \frac{1}{4}\right\rangle$.

The unit vector in the direction of $\overrightarrow{P Q}=\langle 5-2,4-8\rangle=\langle 3,-4\rangle$ is $\mathbf{u}=\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle$, so
$D_{\mathbf{u}} f(2,8)=\nabla f(2,8) \cdot \mathbf{u}=\left\langle 1, \frac{1}{4}\right\rangle \cdot\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle=\frac{2}{5}$.
20. $f(x, y, z)=x y+y z+z x \Rightarrow \nabla f(x, y, z)=\langle y+z, x+z, y+x\rangle$, so $\nabla f(1,-1,3)=\langle 2,4,0\rangle$. The unit vector in the direction of $\overrightarrow{P Q}=\langle 1,5,2\rangle$ is $\mathbf{u}=\frac{1}{\sqrt{30}}\langle 1,5,2\rangle$, so $D_{\mathbf{u}} f(1,-1,3)=\nabla f(1,-1,3) \cdot \mathbf{u}=\langle 2,4,0\rangle \cdot \frac{1}{\sqrt{30}}\langle 1,5,2\rangle=\frac{22}{\sqrt{30}}$.

CHAPTER 14 PARTIAL DERIVATIVES

21. $f(x, y)=4 y \sqrt{x} \Rightarrow \nabla f(x, y)=\left\langle 4 y \cdot \frac{1}{2} x^{-1 / 2}, 4 \sqrt{x}\right\rangle=\langle 2 y / \sqrt{x}, 4 \sqrt{x}\rangle$.
$\nabla f(4,1)=\langle 1,8\rangle$ is the direction of maximum rate of change, and the maximum rate is $|\nabla f(4,1)|=\sqrt{1+64}=\sqrt{65}$.
22. $f(s, t)=t e^{s t} \Rightarrow \nabla f(s, t)=\left\langle t e^{s t}(t), t e^{s t}(s)+e^{s t}(1)\right\rangle=\left\langle t^{2} e^{s t},(s t+1) e^{s t}\right\rangle$.
$\nabla f(0,2)=\langle 4,1\rangle$ is the direction of maximum rate of change, and the maximum rate is $|\nabla f(0,2)|=\sqrt{16+1}=\sqrt{17}$.
23. $f(x, y)=\sin (x y) \Rightarrow \nabla f(x, y)=\langle y \cos (x y), x \cos (x y)\rangle, \nabla f(1,0)=\langle 0,1\rangle$. Thus the maximum rate of change is $|\nabla f(1,0)|=1$ in the direction $\langle 0,1\rangle$.
24. $f(x, y, z)=\frac{x+y}{z} \Rightarrow \nabla f(x, y, z)=\left\langle\frac{1}{z}, \frac{1}{z},-\frac{x+y}{z^{2}}\right\rangle, \nabla f(1,1,-1)=\langle-1,-1,-2\rangle$. Thus the maximum rate of change is $|\nabla f(1,1,-1)|=\sqrt{1+1+4}=\sqrt{6}$ in the direction $\langle-1,-1,-2\rangle$.

1-4 A region R is shown. Decide whether to use polar coordinates or rectangular coordinates and write $\iint_{R} f(x, y) d A$ as an iterated integral, where f is an arbitrary continuous function on R.
14. $\iint_{D} x d A$, where D is the region in the first quadrant that lies between the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=2 x$

15-18 Use a double integral to find the area of the region.

5-6 Sketch the region whose area is given by the integral and evaluate the integral.
(5. $\int_{\pi / 4}^{3 \pi / 4} \int_{1}^{2} r d r d \theta$
6. $\int_{\pi / 2}^{\pi} \int_{0}^{2 \sin \theta} r d r d \theta$

7-14 Evaluate the given integral by changing to polar coordinates.
7. $\iint_{D} x^{2} y d A$, where D is the top half of the disk with center the origin and radius 5
8. $\iint_{R}(2 x-y) d A$, where R is the region in the first quadrant enclosed by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $y=x$
9. $\iint_{R} \sin \left(x^{2}+y^{2}\right) d A$, where R is the region in the first quadrant between the circles with center the origin and radii 1 and 3
10. $\iint_{R} \frac{y^{2}}{x^{2}+y^{2}} d A$, where R is the region that lies between the circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2}$ with $0<a<b$

1. $\iint_{D} e^{-x^{2}-y^{2}} d A$, where D is the region bounded by the semicircle $x=\sqrt{4-y^{2}}$ and the y-axis
2. $\iint_{D} \cos \sqrt{x^{2}+y^{2}} d A$, where D is the disk with center the - origin and radius 2
3. $\iint_{R} \arctan (y / x) d A$,
where $R=\left\{(x, y) \mid 1 \leqslant x^{2}+y^{2} \leqslant 4,0 \leqslant y \leqslant x\right\}$
4. Homework Hints available at stewartcalculus.com
\square CHAPTER 15 MULTIPLE INTEGRALS
5. $\iint_{D}\left(a x^{3}+b y^{3}+\sqrt{a^{2}-x^{2}}\right) d A=\iint_{D} a x^{3} d A+\iint_{D} b y^{3} d A+\iint_{D} \sqrt{a^{2}-x^{2}} d A$. Now $a x^{3}$ is odd with respect to x and $b y^{3}$ is odd with respect to y, and the region of integration is symmetric with respect to both x and y, so $\iint_{D} a x^{3} d A=\iint_{D} b y^{3} d A=0$.
$\iint_{D} \sqrt{a^{2}-x^{2}} d A$ represents the volume of the solid region under the graph of $z=\sqrt{a^{2}-x^{2}}$ and above the rectangle D, namely a half circular cylinder with radius a and length $2 b$ (see the figure) whose volume is $\frac{1}{2} \cdot \pi r^{2} h=\frac{1}{2} \pi a^{2}(2 b)=\pi a^{2} b$. Thus

$\iint_{D}\left(a x^{3}+b y^{3}+\sqrt{a^{2}-x^{2}}\right) d A=0+0+\pi a^{2} b=\pi a^{2} b$.
6. To find the equations of the boundary curves, we require that the z-values of the two surfaces be the same. In Maple, we use the command solve ($4-x^{\wedge} 2-y^{\wedge} 2=1-x-y, y$) ; and in Mathematica, we use Solve $\left[4-x^{\wedge} 2-y^{\wedge} 2==1-x-y, y\right]$. We find that the curves have equations $y=\frac{1 \pm \sqrt{13+4 x-4 x^{2}}}{2}$. To find the two points of intersection of these curves, we use the CAS to solve $13+4 x-4 x^{2}=0$, finding that
 $x=\frac{1 \pm \sqrt{14}}{2}$. So, using the CAS to evaluate the integral, the volume of intersection is

$$
V=\int_{(1-\sqrt{14}) / 2}^{(1+\sqrt{14}) / 2} \int_{\left(1-\sqrt{13+4 x-4 x^{2}}\right) / 2}^{\left(1+\sqrt{13+4 x-4 x^{2}}\right) / 2}\left[\left(4-x^{2}-y^{2}\right)-(1-x-y)\right] d y d x=\frac{49 \pi}{8}
$$

15.4 Double Integrals in Polar Coordinates

1. The region R is more easily described by polar coordinates: $R=\left\{(r, \theta) \mid 0 \leq r \leq 4,0 \leq \theta \leq \frac{3 \pi}{2}\right\}$.

Thus $\iint_{R} f(x, y) d A=\int_{0}^{3 \pi / 2} \int_{0}^{4} f(r \cos \theta, r \sin \theta) r d r d \theta$.
2. The region R is more easily described by rectangular coordinates: $R=\left\{(x, y) \mid-1 \leq x \leq 1,0 \leq y \leq 1-x^{2}\right\}$.

Thus $\iint_{R} f(x, y) d A=\int_{-1}^{1} \int_{0}^{1-x^{2}} f(x, y) d y d x$.
3. The region R is more easily described by rectangular coordinates: $R=\left\{(x, y) \mid-1 \leq x \leq 1,0 \leq y \leq \frac{1}{2} x+\frac{1}{2}\right\}$.

Thus $\iint_{R} f(x, y) d A=\int_{-1}^{1} \int_{0}^{(x+1) / 2} f(x, y) d y d x$.
4. The region R is more easily described by polar coordinates: $R=\left\{(r, \theta) \mid 3 \leq r \leq 6,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right\}$.

Thus $\iint_{R} f(x, y) d A=\int_{-\pi / 2}^{\pi / 2} \int_{3}^{6} f(r \cos \theta, r \sin \theta) r d r d \theta$.
5. The integral $\int_{\pi / 4}^{3 \pi / 4} \int_{1}^{2} r d r d \theta$ represents the area of the region
$R=\{(r, \theta) \mid 1 \leq r \leq 2, \pi / 4 \leq \theta \leq 3 \pi / 4\}$, the top quarter portion of a ring (annulus).

$$
\begin{aligned}
\int_{\pi / 4}^{3 \pi / 4} \int_{1}^{2} r d r d \theta & =\left(\int_{\pi / 4}^{3 \pi / 4} d \theta\right)\left(\int_{1}^{2} r d r\right) \\
& =[\theta]_{\pi / 4}^{3 \pi / 4}\left[\frac{1}{2} r^{2}\right]_{1}^{2}=\left(\frac{3 \pi}{4}-\frac{\pi}{4}\right) \cdot \frac{1}{2}(4-1)=\frac{\pi}{2} \cdot \frac{3}{2}=\frac{3 \pi}{4}
\end{aligned}
$$

6. The integral $\int_{\pi / 2}^{\pi} \int_{0}^{2 \sin \theta} r d r d \theta$ represents the area of the region $R=\{(r, \theta) \mid 1 \leq r \leq 2 \sin \theta, \pi / 2 \leq \theta \leq \pi\}$. Since
$r=2 \sin \theta \quad \Rightarrow \quad r^{2}=2 r \sin \theta \quad \Leftrightarrow \quad x^{2}+y^{2}=2 y \quad \Leftrightarrow$
$x^{2}+(y-1)^{2}=1, R$ is the portion in the second quadrant of a disk of radius 1 with center $(0,1)$.

$$
\begin{aligned}
\int_{\pi / 2}^{\pi} \int_{0}^{2 \sin \theta} r d r d \theta & =\int_{\pi / 2}^{\pi}\left[\frac{1}{2} r^{2}\right]_{r=0}^{r=2 \sin \theta} d \theta=\int_{\pi / 2}^{\pi} 2 \sin ^{2} \theta d \theta \\
& =\int_{\pi / 2}^{\pi} 2 \cdot \frac{1}{2}(1-\cos 2 \theta) d \theta=\left[\theta-\frac{1}{2} \sin 2 \theta\right]_{\pi / 2}^{\pi} \\
& =\pi-0-\frac{\pi}{2}+0=\frac{\pi}{2}
\end{aligned}
$$

7. The half disk D can be described in polar coordinates as $D=\{(r, \theta) \mid 0 \leq r \leq 5,0 \leq \theta \leq \pi\}$. Then

$$
\begin{aligned}
\iint_{D} x^{2} y d A & =\int_{0}^{\pi} \int_{0}^{5}(r \cos \theta)^{2}(r \sin \theta) r d r d \theta=\left(\int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta\right)\left(\int_{0}^{5} r^{4} d r\right) \\
& =\left[-\frac{1}{3} \cos ^{3} \theta\right]_{0}^{\pi}\left[\frac{1}{5} r^{5}\right]_{0}^{5}=-\frac{1}{3}(-1-1) \cdot 625=\frac{1250}{3}
\end{aligned}
$$

8. The region R is $\frac{1}{8}$ of a disk, as shown in the figure, and can be described by $R=\{(r, \theta) \mid 0 \leq r \leq 2, \pi / 4 \leq \theta \leq \pi / 2\}$. Thus

$$
\begin{aligned}
\iint_{R}(2 x-y) d A & =\int_{\pi / 4}^{\pi / 2} \int_{0}^{2}(2 r \cos \theta-r \sin \theta) r d r d \theta \\
& =\left(\int_{\pi / 4}^{\pi / 2}(2 \cos \theta-\sin \theta) d \theta\right)\left(\int_{0}^{2} r^{2} d r\right) \\
& =[2 \sin \theta+\cos \theta]_{\pi / 4}^{\pi / 2}\left[\frac{1}{3} r^{3}\right]_{0}^{2} \\
& =\left(2+0-\sqrt{2}-\frac{\sqrt{2}}{2}\right)\left(\frac{8}{3}\right)=\frac{16}{3}-4 \sqrt{2}
\end{aligned}
$$

9. $\iint_{R} \sin \left(x^{2}+y^{2}\right) d A=\int_{0}^{\pi / 2} \int_{1}^{3} \sin \left(r^{2}\right) r d r d \theta=\left(\int_{0}^{\pi / 2} d \theta\right)\left(\int_{1}^{3} r \sin \left(r^{2}\right) d r\right)$

$$
\begin{aligned}
& =[\theta]_{0}^{\pi / 2}\left[-\frac{1}{2} \cos \left(r^{2}\right)\right]_{1}^{3} \\
& =\left(\frac{\pi}{2}\right)\left[-\frac{1}{2}(\cos 9-\cos 1)\right]=\frac{\pi}{4}(\cos 1-\cos 9)
\end{aligned}
$$

10. $\iint_{R} \frac{y^{2}}{x^{2}+y^{2}} d A=\int_{0}^{2 \pi} \int_{a}^{b} \frac{(r \sin \theta)^{2}}{r^{2}} r d r d \theta=\left(\int_{0}^{2 \pi} \sin ^{2} \theta d \theta\right)\left(\int_{a}^{b} r d r\right)$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \frac{1}{2}(1-\cos 2 \theta) d \theta \int_{a}^{b} r d r=\frac{1}{2}\left[\theta-\frac{1}{2} \sin 2 \theta\right]_{0}^{2 \pi}\left[\frac{1}{2} r^{2}\right]_{a}^{b} \\
& =\frac{1}{2}(2 \pi-0-0)\left[\frac{1}{2}\left(b^{2}-a^{2}\right)\right]=\frac{\pi}{2}\left(b^{2}-a^{2}\right)
\end{aligned}
$$

11. $\iint_{D} e^{-x^{2}-y^{2}} d A=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2} e^{-r^{2}} r d r d \theta=\int_{-\pi / 2}^{\pi / 2} d \theta \int_{0}^{2} r e^{-r^{2}} d r$

$$
=[\theta]_{-\pi / 2}^{\pi / 2}\left[-\frac{1}{2} e^{-r^{2}}\right]_{0}^{2}=\pi\left(-\frac{1}{2}\right)\left(e^{-4}-e^{0}\right)=\frac{\pi}{2}\left(1-e^{-4}\right)
$$

12. $\iint_{D} \cos \sqrt{x^{2}+y^{2}} d A=\int_{0}^{2 \pi} \int_{0}^{2} \cos \sqrt{r^{2}} r d r d \theta=\int_{0}^{2 \pi} d \theta \int_{0}^{2} r \cos r d r$. For the second integral, integrate by parts with $u=r, d v=\cos r d r$. Then $\iint_{D} \cos \sqrt{x^{2}+y^{2}} d A=[\theta]_{0}^{2 \pi}[r \sin r+\cos r]_{0}^{2}=2 \pi(2 \sin 2+\cos 2-1)$.
13. R is the region shown in the figure, and can be described
by $R=\{(r, \theta) \mid 0 \leq \theta \leq \pi / 4,1 \leq r \leq 2\}$. Thus
$\iint_{R} \arctan (y / x) d A=\int_{0}^{\pi / 4} \int_{1}^{2} \arctan (\tan \theta) r d r d \theta$ since $y / x=\tan \theta$.
Also, $\arctan (\tan \theta)=\theta$ for $0 \leq \theta \leq \pi / 4$, so the integral becomes
 $\int_{0}^{\pi / 4} \int_{1}^{2} \theta r d r d \theta=\int_{0}^{\pi / 4} \theta d \theta \int_{1}^{2} r d r=\left[\frac{1}{2} \theta^{2}\right]_{0}^{\pi / 4}\left[\frac{1}{2} r^{2}\right]_{1}^{2}=\frac{\pi^{2}}{32} \cdot \frac{3}{2}=\frac{3}{64} \pi^{2}$.
14.

$$
\begin{aligned}
\iint_{D} x d A & =\iint_{\substack{x^{2}+y^{2} \leq 4 \\
x \geq 0, y \geq 0}} x d A-\iint_{(x-1)^{2}+y^{2} \leq 1}^{y \geq 0} \\
& =\int_{0}^{\pi / 2} \int_{0}^{2} r^{2} \cos \theta d r d \theta-\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r^{2} \cos \theta d r d \theta \\
& =\int_{0}^{\pi / 2} \frac{1}{3}(8 \cos \theta) d \theta-\int_{0}^{\pi / 2} \frac{1}{3}\left(8 \cos ^{4} \theta\right) d \theta \\
& =\frac{8}{3}-\frac{8}{12}\left[\cos ^{3} \theta \sin \theta+\frac{3}{2}(\theta+\sin \theta \cos \theta)\right]_{0}^{\pi / 2} \\
& =\frac{8}{3}-\frac{2}{3}\left[0+\frac{3}{2}\left(\frac{\pi}{2}\right)\right]=\frac{16-3 \pi}{6}
\end{aligned}
$$

15. One loop is given by the region

$$
\begin{aligned}
& D=\{(r, \theta) \mid-\pi / 6 \leq \theta \leq \pi / 6,0 \leq r \leq \cos 3 \theta\}, \text { so the area is } \\
& \begin{aligned}
\iint_{D} d A & =\int_{-\pi / 6}^{\pi / 6} \int_{0}^{\cos 3 \theta} r d r d \theta=\int_{-\pi / 6}^{\pi / 6}\left[\frac{1}{2} r^{2}\right]_{r=0}^{r=\cos 3 \theta} d \theta \\
& =\int_{-\pi / 6}^{\pi / 6} \frac{1}{2} \cos ^{2} 3 \theta d \theta=2 \int_{0}^{\pi / 6} \frac{1}{2}\left(\frac{1+\cos 6 \theta}{2}\right) d \theta \\
& =\frac{1}{2}\left[\theta+\frac{1}{6} \sin 6 \theta\right]_{0}^{\pi / 6}=\frac{\pi}{12}
\end{aligned}
\end{aligned}
$$

16. By symmetry, the area of the region is 4 times the area of the region D in the first quadrant enclosed by the cardiod
$r=1-\cos \theta$ (see the figure). Here $D=\{(r, \theta) \mid 0 \leq r \leq 1-\cos \theta, 0 \leq \theta \leq \pi / 2\}$, so the total area is

$$
\begin{aligned}
4 A(D) & =4 \iint_{D} d A=4 \int_{0}^{\pi / 2} \int_{0}^{1-\cos \theta} r d r d \theta=4 \int_{0}^{\pi / 2}\left[\frac{1}{2} r^{2}\right]_{r=0}^{r=1-\cos \theta} d \theta \\
& =2 \int_{0}^{\pi / 2}(1-\cos \theta)^{2} d \theta=2 \int_{0}^{\pi / 2}\left(1-2 \cos \theta+\cos ^{2} \theta\right) d \theta \\
& =2 \int_{0}^{\pi / 2}\left[1-2 \cos \theta+\frac{1}{2}(1+\cos 2 \theta)\right] d \theta \\
& =2\left[\theta-2 \sin \theta+\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{\pi / 2} \\
& =2\left(\frac{\pi}{2}-2+\frac{\pi}{4}\right)=\frac{3 \pi}{2}-4
\end{aligned}
$$

0.0.7 Questions Solutions MASS Flux

6. $\iint_{S} x y z d S$, theorem much easier
$y=u \sin v, z=u, 0 \leqslant u \leqslant 1,0 \leqslant v \leqslant \pi / 2$
7. $\iint_{S} y d S, S$ is the helicoid with vector equation $\mathbf{r}(u, v)=\langle u \cos v, u \sin v, v\rangle, 0 \leqslant u \leqslant 1,0 \leqslant v \leqslant \pi$
8. $\iint_{S}\left(x^{2}+y^{2}\right) d S$,
S is the surface with vector equation
$\mathbf{r}(u, v)=\left\langle 2 u v, u^{2}-v^{2}, u^{2}+v^{2}\right\rangle, u^{2}+v^{2} \leqslant 1$
9. $\iint_{S} x^{2} y z d S$,
S is the part of the plane $z=1+2 x+3 y$ that lies above the rectangle $[0,3] \times[0,2]$
10. $\iint_{S} x z d S$,
$\underset{S}{S}$ is the part of the plane $2 x+2 y+z=4$ that lies in the first octant
11. $\iint_{S} x d S$,
\int_{S} is the triangular region with vertices $(1,0,0),(0,-2,0)$, and $(0,0,4)$
12. $\iint_{S} y d S$,
S is the surface $z=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right), 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1$
13. $\iint_{S} x^{2} z^{2} d S$, \mathscr{S} is the part of the cone $z^{2}=x^{2}+y^{2}$ that lies between the planes $z=1$ and $z=3$
14. $\iint_{S} z d S$, S is the surface $x=y+2 z^{2}, 0 \leqslant y \leqslant 1,0 \leqslant z \leqslant 1$
15. $\iint_{S} y d S$,
S is the part of the paraboloid $y=x^{2}+z^{2}$ that lies inside the cylinder $x^{2}+z^{2}=4$
16. $\iint_{S} y^{2} d S$,
\dot{S} is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies inside the cylinder $x^{2}+y^{2}=1$ and above the $x y$-plane
17. $\iint_{S}\left(x^{2} z+y^{2} z\right) d S$,
S is the hemisphere $x^{2}+y^{2}+z^{2}=4, z \geqslant 0$
18. $\iint_{S} x z d S$,
S is the boundary of the region enclosed by the cylinder $y^{2}+z^{2}=9$ and the planes $x=0$ and $x+y=5$
$\iint_{S}\left(z+x^{2} y\right) d S$,
\int_{S} is the part of the cylinder $y^{2}+z^{2}=1$ that lies between the planes $x=0$ and $x=3$ in the first octant
19. $\iint_{S}\left(x^{2}+y^{2}+z^{2}\right) d S$,
S is the part of the cylinder $x^{2}+y^{2}=9$ between the planes $z=0$ and $z=2$, together with its top and bottom disks

21-32 Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ for the given vector field \mathbf{F} and the oriented surface S. In other words, find the flux of \mathbf{F} across S. For closed surfaces, use the positive (outward) orientation.
21. $\mathbf{F}(x, y, z)=z e^{x y} \mathbf{i}-3 z e^{x y} \mathbf{j}+x y \mathbf{k}$,
S is the parallelogram of Exercise 5 with upward orientation
22. $\mathbf{F}(x, y, z)=z \mathbf{i}+y \mathbf{j}+x \mathbf{k}$,
S is the helicoid of Exercise 7 with upward orientation
23. $\mathbf{F}(x, y, z)=x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k}, \quad S$ is the part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the square $0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1$, and has upward orientation
24. $\mathbf{F}(x, y, z)=-x \mathbf{i}-y \mathbf{j}+z^{3} \mathbf{k}$,
S is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=3$ with downward orientation
25. $\mathbf{F}(x, y, z)=x \mathbf{i}-z \mathbf{j}+y \mathbf{k}$,
S is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ in the first octant, with orientation toward the origin
26 $\mathbf{F}(x, y, z)=x z \mathbf{i}+x \mathbf{j}+y \mathbf{k}$,
S is the hemisphere $x^{2}+y^{2}+z^{2}=25, y \geqslant 0$, oriented in the direction of the positive y-axis
27. $\mathbf{F}(x, y, z)=y \mathbf{j}-z \mathbf{k}$,
S consists of the paraboloid $y=x^{2}+z^{2}, 0 \leqslant y \leqslant 1$, and the disk $x^{2}+z^{2} \leqslant 1, y=1$
28. $\mathbf{F}(x, y, z)=x y \mathbf{i}+4 x^{2} \mathbf{j}+y z \mathbf{k}, \quad S$ is the surface $z=x e^{y}$, $0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1$, with upward orientation
29. $\mathbf{F}(x, y, z)=x \mathbf{i}+2 y \mathbf{j}+3 z \mathbf{k}$,
S is the cube with vertices $(\pm 1, \pm 1, \pm 1)$
30. $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+5 \mathbf{k}, \quad S$ is the boundary of the region enclosed by the cylinder $x^{2}+z^{2}=1$ and the planes $y=0$ and $x+y=2$
31. $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}, \quad S$ is the boundary of the solid half-cylinder $0 \leqslant z \leqslant \sqrt{1-y^{2}}, 0 \leqslant x \leqslant 2$
32. $\mathbf{F}(x, y, z)=y \mathbf{i}+(z-y) \mathbf{j}+x \mathbf{k}$,
S is the surface of the tetrahedron with vertices $(0,0,0)$, $(1,0,0),(0,1,0)$, and $(0,0,1)$
33. Evaluate $\iint_{S}\left(x^{2}+y^{2}+z^{2}\right) d S$ correct to four decimal places, where S is the surface $z=x e^{y}, 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1$.
34. Find the exact value of $\iint_{S} x^{2} y z d S$, where S is the surface $z=x y, 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1$.35. Find the value of $\iint_{S} x^{2} y^{2} z^{2} d S$ correct to four decimal places, where S is the part of the paraboloid $z=3-2 x^{2}-y^{2}$ that lies above the $x y$-plane.36. Find the flux of

$$
\mathbf{F}(x, y, z)=\sin (x y z) \mathbf{i}+x^{2} y \mathbf{j}+z^{2} e^{x / 5} \mathbf{k}
$$

across the part of the cylinder $4 y^{2}+z^{2}=4$ that lies above the $x y$-plane and between the planes $x=-2$ and $x=2$ with upward orientation. Illustrate by using a computer algebra system to draw the cylinder and the vector field on the same screen.
37. Find a formula for $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ similar to Formula 10 for the case where S is given by $y=h(x, z)$ and \mathbf{n} is the unit normal that points toward the left.
6. $\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+u \mathbf{k}, 0 \leq u \leq 1,0 \leq v \leq \pi / 2$ and
$\mathbf{r}_{u} \times \mathbf{r}_{v}=(\cos v \mathbf{i}+\sin v \mathbf{j}+\mathbf{k}) \times(-u \sin v \mathbf{i}+u \cos v \mathbf{j})=-u \cos v \mathbf{i}-u \sin v \mathbf{j}+u \mathbf{k} \quad \Rightarrow$
$\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|=\sqrt{u^{2} \cos ^{2} v+u^{2} \sin ^{2} v+u^{2}}=\sqrt{2 u^{2}}=\sqrt{2} u[$ since $u \geq 0]$. Then by Formula 2,
$\iint_{S} x y z d S=\iint_{D}(u \cos v)(u \sin v)(u)\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A=\int_{0}^{1} \int_{0}^{\pi / 2}\left(u^{3} \sin v \cos v\right) \cdot \sqrt{2} u d v d u$ $=\sqrt{2} \int_{0}^{1} u^{4} d u \int_{0}^{\pi / 2} \sin v \cos v d v=\sqrt{2}\left[\frac{1}{5} u^{5}\right]_{0}^{1}\left[\frac{1}{2} \sin ^{2} v\right]_{0}^{\pi / 2}=\sqrt{2} \cdot \frac{1}{5} \cdot \frac{1}{2}=\frac{1}{10} \sqrt{2}$
7. $\mathbf{r}(u, v)=\langle u \cos v, u \sin v, v\rangle, 0 \leq u \leq 1,0 \leq v \leq \pi$ and
$\mathbf{r}_{u} \times \mathbf{r}_{v}=\langle\cos v, \sin v, 0\rangle \times\langle-u \sin v, u \cos v, 1\rangle=\langle\sin v,-\cos v, u\rangle \quad \Rightarrow$
$\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|=\sqrt{\sin ^{2} v+\cos ^{2} v+u^{2}}=\sqrt{u^{2}+1}$. Then
$\iint_{S} y d S=\iint_{D}(u \sin v)\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A=\int_{0}^{1} \int_{0}^{\pi}(u \sin v) \cdot \sqrt{u^{2}+1} d v d u=\int_{0}^{1} u \sqrt{u^{2}+1} d u \int_{0}^{\pi} \sin v d v$

$$
=\left[\frac{1}{3}\left(u^{2}+1\right)^{3 / 2}\right]_{0}^{1}[-\cos v]_{0}^{\pi}=\frac{1}{3}\left(2^{3 / 2}-1\right) \cdot 2=\frac{2}{3}(2 \sqrt{2}-1)
$$

8. $\mathbf{r}(u, v)=\left\langle 2 u v, u^{2}-v^{2}, u^{2}+v^{2}\right\rangle, u^{2}+v^{2} \leq 1$ and
$\mathbf{r}_{u} \times \mathbf{r}_{v}=\langle 2 v, 2 u, 2 u\rangle \times\langle 2 u,-2 v, 2 v\rangle=\left\langle 8 u v, 4 u^{2}-4 v^{2},-4 u^{2}-4 v^{2}\right\rangle$, so

$$
\begin{aligned}
\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| & =\sqrt{(8 u v)^{2}+\left(4 u^{2}-4 v^{2}\right)^{2}+\left(-4 u^{2}-4 v^{2}\right)^{2}}=\sqrt{64 u^{2} v^{2}+32 u^{4}+32 v^{4}} \\
& =\sqrt{32\left(u^{2}+v^{2}\right)^{2}}=4 \sqrt{2}\left(u^{2}+v^{2}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
\iint_{S}\left(x^{2}+y^{2}\right) d S & =\iint_{D}\left[(2 u v)^{2}+\left(u^{2}-v^{2}\right)^{2}\right]\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A=\iint_{D}\left(4 u^{2} v^{2}+u^{4}-2 u^{2} v^{2}+v^{4}\right) \cdot 4 \sqrt{2}\left(u^{2}+v^{2}\right) d A \\
& =4 \sqrt{2} \iint_{D}\left(u^{4}+2 u^{2} v^{2}+v^{4}\right)\left(u^{2}+v^{2}\right) d A=4 \sqrt{2} \iint_{D}\left(u^{2}+v^{2}\right)^{3} d A=4 \sqrt{2} \int_{0}^{2 \pi} \int_{0}^{1}\left(r^{2}\right)^{3} r d r d \theta \\
& =4 \sqrt{2} \int_{0}^{2 \pi} d \theta \int_{0}^{1} r^{7} d r=4 \sqrt{2}[\theta]_{0}^{2 \pi}\left[\frac{1}{8} r^{8}\right]_{0}^{1}=4 \sqrt{2} \cdot 2 \pi \cdot \frac{1}{8}=\sqrt{2} \pi
\end{aligned}
$$

9. $z=1+2 x+3 y$ so $\frac{\partial z}{\partial x}=2$ and $\frac{\partial z}{\partial y}=3$. Then by Formula 4 ,

$$
\begin{aligned}
\iint_{S} x^{2} y z d S & =\iint_{D} x^{2} y z \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} d A=\int_{0}^{3} \int_{0}^{2} x^{2} y(1+2 x+3 y) \sqrt{4+9+1} d y d x \\
& =\sqrt{14} \int_{0}^{3} \int_{0}^{2}\left(x^{2} y+2 x^{3} y+3 x^{2} y^{2}\right) d y d x=\sqrt{14} \int_{0}^{3}\left[\frac{1}{2} x^{2} y^{2}+x^{3} y^{2}+x^{2} y^{3}\right]_{y=0}^{y=2} d x \\
& =\sqrt{14} \int_{0}^{3}\left(10 x^{2}+4 x^{3}\right) d x=\sqrt{14}\left[\frac{10}{3} x^{3}+x^{4}\right]_{0}^{3}=171 \sqrt{14}
\end{aligned}
$$

10. S is the part of the plane $z=4-2 x-2 y$ over the region $D=\{(x, y) \mid 0 \leq x \leq 2,0 \leq y \leq 2-x\}$. Thus

$$
\begin{aligned}
\iint_{S} x z d S & =\iint_{D} x(4-2 x-2 y) \sqrt{(-2)^{2}+(-2)^{2}+1} d A=3 \int_{0}^{2} \int_{0}^{2-x}\left(4 x-2 x^{2}-2 x y\right) d y d x \\
& =3 \int_{0}^{2}\left[4 x y-2 x^{2} y-x y^{2}\right]_{y=0}^{y=2-x} d x=3 \int_{0}^{2}\left[4 x(2-x)-2 x^{2}(2-x)-x(2-x)^{2}\right] d x \\
& =3 \int_{0}^{2}\left(x^{3}-4 x^{2}+4 x\right) d x=3\left[\frac{1}{4} x^{4}-\frac{4}{3} x^{3}+2 x^{2}\right]_{0}^{2}=3\left(4-\frac{32}{3}+8\right)=4
\end{aligned}
$$

11. An equation of the plane through the points $(1,0,0),(0,-2,0)$, and $(0,0,4)$ is $4 x-2 y+z=4$, so S is the region in the plane $z=4-4 x+2 y$ over $D=\{(x, y) \mid 0 \leq x \leq 1,2 x-2 \leq y \leq 0\}$. Thus by Formula 4,

$$
\begin{aligned}
\iint_{S} x d S & =\iint_{D} x \sqrt{(-4)^{2}+(2)^{2}+1} d A=\sqrt{21} \int_{0}^{1} \int_{2 x-2}^{0} x d y d x=\sqrt{21} \int_{0}^{1}[x y]_{y=2 x-2}^{y=0} d x \\
& =\sqrt{21} \int_{0}^{1}\left(-2 x^{2}+2 x\right) d x=\sqrt{21}\left[-\frac{2}{3} x^{3}+x^{2}\right]_{0}^{1}=\sqrt{21}\left(-\frac{2}{3}+1\right)=\frac{\sqrt{21}}{3}
\end{aligned}
$$

12. $z=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right)$ and

$$
\begin{aligned}
\iint_{S} y d S & =\iint_{D} y \sqrt{(\sqrt{x})^{2}+(\sqrt{y})^{2}+1} d A=\int_{0}^{1} \int_{0}^{1} y \sqrt{x+y+1} d x d y \\
& =\int_{0}^{1} y\left[\frac{2}{3}(x+y+1)^{3 / 2}\right]_{x=0}^{x=1} d y=\int_{0}^{1} \frac{2}{3} y\left[(y+2)^{3 / 2}-(y+1)^{3 / 2}\right] d y
\end{aligned}
$$

Substituting $u=y+2$ in the first term and $t=y+1$ in the second, we have

$$
\begin{aligned}
\iint_{S} y d S & =\frac{2}{3} \int_{2}^{3}(u-2) u^{3 / 2} d u-\frac{2}{3} \int_{1}^{2}(t-1) t^{3 / 2} d t=\frac{2}{3}\left[\frac{2}{7} u^{7 / 2}-\frac{4}{5} u^{5 / 2}\right]_{2}^{3}-\frac{2}{3}\left[\frac{2}{7} t^{7 / 2}-\frac{2}{5} t^{5 / 2}\right]_{1}^{2} \\
& =\frac{2}{3}\left[\frac{2}{7}\left(3^{7 / 2}-2^{7 / 2}\right)-\frac{4}{5}\left(3^{5 / 2}-2^{5 / 2}\right)-\frac{2}{7}\left(2^{7 / 2}-1\right)+\frac{2}{5}\left(2^{5 / 2}-1\right)\right] \\
& =\frac{2}{3}\left(\frac{18}{35} \sqrt{3}+\frac{8}{35} \sqrt{2}-\frac{4}{35}\right)=\frac{4}{105}(9 \sqrt{3}+4 \sqrt{2}-2)
\end{aligned}
$$

13. S is the portion of the cone $z^{2}=x^{2}+y^{2}$ for $1 \leq z \leq 3$, or equivalently, S is the part of the surface $z=\sqrt{x^{2}+y^{2}}$ over the region $D=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 9\right\}$. Thus
\square CHAPTER 16 VECTOR CALCULUS

$$
\begin{aligned}
\iint_{S} x^{2} z^{2} d S & =\iint_{D} x^{2}\left(x^{2}+y^{2}\right) \sqrt{\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)^{2}+\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)^{2}+1} d A \\
& =\iint_{D} x^{2}\left(x^{2}+y^{2}\right) \sqrt{\frac{x^{2}+y^{2}}{x^{2}+y^{2}}+1} d A=\iint_{D} \sqrt{2} x^{2}\left(x^{2}+y^{2}\right) d A=\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{3}(r \cos \theta)^{2}\left(r^{2}\right) r d r d \theta \\
& =\sqrt{2} \int_{0}^{2 \pi} \cos ^{2} \theta d \theta \int_{1}^{3} r^{5} d r=\sqrt{2}\left[\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{2 \pi}\left[\frac{1}{6} r^{6}\right]_{1}^{3}=\sqrt{2}(\pi) \cdot \frac{1}{6}\left(3^{6}-1\right)=\frac{364 \sqrt{2}}{3} \pi
\end{aligned}
$$

14. Using y and z as parameters, we have $\mathbf{r}(y, z)=\left(y+2 z^{2}\right) \mathbf{i}+y \mathbf{j}+z \mathbf{k}, 0 \leq y \leq 1,0 \leq z \leq 1$.

Then $\mathbf{r}_{y} \times \mathbf{r}_{z}=(\mathbf{i}+\mathbf{j}) \times(4 z \mathbf{i}+\mathbf{k})=\mathbf{i}-\mathbf{j}-4 z \mathbf{k}$ and $\left|\mathbf{r}_{y} \times \mathbf{r}_{z}\right|=\sqrt{2+16 z^{2}}$. Thus
$\iint_{S} z d S=\int_{0}^{1} \int_{0}^{1} z \sqrt{2+16 z^{2}} d y d z=\int_{0}^{1} z \sqrt{2+16 z^{2}} d z=\left[\frac{1}{32} \cdot \frac{2}{3}\left(2+16 z^{2}\right)^{3 / 2}\right]_{0}^{1}=\frac{1}{48}\left(18^{3 / 2}-2^{3 / 2}\right)=\frac{13}{12} \sqrt{2}$.
15. Using x and z as parameters, we have $\mathbf{r}(x, z)=x \mathbf{i}+\left(x^{2}+z^{2}\right) \mathbf{j}+z \mathbf{k}, x^{2}+z^{2} \leq 4$. Then

$$
\begin{aligned}
& \mathbf{r}_{x} \times \mathbf{r}_{z}=(\mathbf{i}+2 x \mathbf{j}) \times(2 z \mathbf{j}+\mathbf{k})=2 x \mathbf{i}-\mathbf{j}+2 z \mathbf{k} \text { and }\left|\mathbf{r}_{x} \times \mathbf{r}_{z}\right|=\sqrt{4 x^{2}+1+4 z^{2}}=\sqrt{1+4\left(x^{2}+z^{2}\right)} \text {. Thus } \\
& \iint_{S} y d S=\iint_{x^{2}+z^{2} \leq 4}\left(x^{2}+z^{2}\right) \sqrt{1+4\left(x^{2}+z^{2}\right)} d A=\int_{0}^{2 \pi} \int_{0}^{2} r^{2} \sqrt{1+4 r^{2}} r d r d \theta=\int_{0}^{2 \pi} d \theta \int_{0}^{2} r^{2} \sqrt{1+4 r^{2}} r d r \\
& =2 \pi \int_{0}^{2} r^{2} \sqrt{1+4 r^{2}} r d r \quad\left[\text { let } u=1+4 r^{2} \quad \Rightarrow \quad r^{2}=\frac{1}{4}(u-1) \text { and } \frac{1}{8} d u=r d r\right] \\
& =2 \pi \int_{1}^{17} \frac{1}{4}(u-1) \sqrt{u} \cdot \frac{1}{8} d u=\frac{1}{16} \pi \int_{1}^{17}\left(u^{3 / 2}-u^{1 / 2}\right) d u \\
& =\frac{1}{16} \pi\left[\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}\right]_{1}^{17}=\frac{1}{16} \pi\left[\frac{2}{5}(17)^{5 / 2}-\frac{2}{3}(17)^{3 / 2}-\frac{2}{5}+\frac{2}{3}\right]=\frac{\pi}{60}(391 \sqrt{17}+1)
\end{aligned}
$$

16. The sphere intersects the cylinder in the circle $x^{2}+y^{2}=1, z=\sqrt{3}$, so S is the portion of the sphere where $z \geq \sqrt{3}$.

Using spherical coordinates to parametrize the sphere we have $\mathbf{r}(\phi, \theta)=2 \sin \phi \cos \theta \mathbf{i}+2 \sin \phi \sin \theta \mathbf{j}+2 \cos \phi \mathbf{k}$, and $\left|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right|=4 \sin \phi$ (see Example 16.6.10). The portion where $z \geq \sqrt{3}$ corresponds to $0 \leq \phi \leq \frac{\pi}{6}, 0 \leq \theta \leq 2 \pi$ so

$$
\begin{aligned}
\iint_{S} y^{2} d S & =\int_{0}^{2 \pi} \int_{0}^{\pi / 6}(2 \sin \phi \sin \theta)^{2}(4 \sin \phi) d \phi d \theta=16 \int_{0}^{2 \pi} \sin ^{2} \theta d \theta \int_{0}^{\pi / 6} \sin ^{3} \phi d \phi \\
& =16\left[\frac{1}{2} \theta-\frac{1}{4} \sin 2 \theta\right]_{0}^{2 \pi}\left[\frac{1}{3} \cos ^{3} \phi-\cos \phi\right]_{0}^{\pi / 6}=16(\pi)\left(\frac{\sqrt{3}}{8}-\frac{\sqrt{3}}{2}-\frac{1}{3}+1\right)=\left(\frac{32}{3}-6 \sqrt{3}\right) \pi
\end{aligned}
$$

17. Using spherical coordinates and Example 16.6 .10 we have $\mathbf{r}(\phi, \theta)=2 \sin \phi \cos \theta \mathbf{i}+2 \sin \phi \sin \theta \mathbf{j}+2 \cos \phi \mathbf{k}$ and $\left|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right|=4 \sin \phi$. Then $\left.\iint_{S}\left(x^{2} z+y^{2} z\right) d S=\int_{0}^{2 \pi} \int_{0}^{\pi / 2}\left(4 \sin ^{2} \phi\right)(2 \cos \phi)(4 \sin \phi) d \phi d \theta=16 \pi \sin ^{4} \phi\right]_{0}^{\pi / 2}=16 \pi$.
18. Here S consists of three surfaces: S_{1}, the lateral surface of the cylinder; S_{2}, the front formed by the plane $x+y=5$; and the back, S_{3}, in the plane $x=0$

On S_{1} : the surface is given by $\mathbf{r}(u, v)=u \mathbf{i}+3 \cos v \mathbf{j}+3 \sin v \mathbf{k}, 0 \leq v \leq 2 \pi$, and $0 \leq x \leq 5-y \Rightarrow$ $0 \leq u \leq 5-3 \cos v$. Then $\mathbf{r}_{u} \times \mathbf{r}_{v}=-3 \cos v \mathbf{j}-3 \sin v \mathbf{k}$ and $\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|=\sqrt{9 \cos ^{2} v+9 \sin ^{2} v}=3$, so

$$
\begin{aligned}
\iint_{S_{1}} x z d S & =\int_{0}^{2 \pi} \int_{0}^{5-3 \cos v} u(3 \sin v)(3) d u d v=9 \int_{0}^{2 \pi}\left[\frac{1}{2} u^{2}\right]_{u=0}^{u=5-3 \cos v} \sin v d v \\
& =\frac{9}{2} \int_{0}^{2 \pi}(5-3 \cos v)^{2} \sin v d v=\frac{9}{2}\left[\frac{1}{9}(5-3 \cos v)^{3}\right]_{0}^{2 \pi}=0
\end{aligned}
$$

On $S_{2}: \mathbf{r}(y, z)=(5-y) \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $\left|\mathbf{r}_{y} \times \mathbf{r}_{z}\right|=|\mathbf{i}+\mathbf{j}|=\sqrt{2}$, where $y^{2}+z^{2} \leq 9$ and

$$
\begin{aligned}
\iint_{S_{2}} x z d S & =\iint_{y^{2}+z^{2} \leq 9}(5-y) z \sqrt{2} d A=\sqrt{2} \int_{0}^{2 \pi} \int_{0}^{3}(5-r \cos \theta)(r \sin \theta) r d r d \theta \\
& =\sqrt{2} \int_{0}^{2 \pi} \int_{0}^{3}\left(5 r^{2}-r^{3} \cos \theta\right)(\sin \theta) d r d \theta=\sqrt{2} \int_{0}^{2 \pi}\left[\frac{5}{3} r^{3}-\frac{1}{4} r^{4} \cos \theta\right]_{r=0}^{r=3} \sin \theta d \theta \\
& \left.=\sqrt{2} \int_{0}^{2 \pi}\left(45-\frac{81}{4} \cos \theta\right) \sin \theta d \theta=\sqrt{2}\left(\frac{4}{81}\right) \cdot \frac{1}{2}\left(45-\frac{81}{4} \cos \theta\right)^{2}\right]_{0}^{2 \pi}=0
\end{aligned}
$$

On $S_{3}: x=0$ so $\iint_{S_{3}} x z d S=0$. Hence $\iint_{S} x z d S=0+0+0=0$.
19. S is given by $\mathbf{r}(u, v)=u \mathbf{i}+\cos v \mathbf{j}+\sin v \mathbf{k}, 0 \leq u \leq 3,0 \leq v \leq \pi / 2$. Then
$\mathbf{r}_{u} \times \mathbf{r}_{v}=\mathbf{i} \times(-\sin v \mathbf{j}+\cos v \mathbf{k})=-\cos v \mathbf{j}-\sin v \mathbf{k}$ and $\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|=\sqrt{\cos ^{2} v+\sin ^{2} v}=1$, so

$$
\begin{aligned}
\iint_{S}\left(z+x^{2} y\right) d S & =\int_{0}^{\pi / 2} \int_{0}^{3}\left(\sin v+u^{2} \cos v\right)(1) d u d v=\int_{0}^{\pi / 2}(3 \sin v+9 \cos v) d v \\
& =[-3 \cos v+9 \sin v]_{0}^{\pi / 2}=0+9+3-0=12
\end{aligned}
$$

20. Let S_{1} be the lateral surface, S_{2} the top disk, and S_{3} the bottom disk.

On $S_{1}: \mathbf{r}(\theta, z)=3 \cos \theta \mathbf{i}+3 \sin \theta \mathbf{j}+z \mathbf{k}, 0 \leq \theta \leq 2 \pi, 0 \leq z \leq 2,\left|\mathbf{r}_{\theta} \times \mathbf{r}_{z}\right|=3$,
$\iint_{S_{1}}\left(x^{2}+y^{2}+z^{2}\right) d S=\int_{0}^{2 \pi} \int_{0}^{2}\left(9+z^{2}\right) 3 d z d \theta=2 \pi(54+8)=124 \pi$.
On $S_{2}: \mathbf{r}(\theta, r)=r \cos \theta \mathbf{i}+r \sin \theta \mathbf{j}+2 \mathbf{k}, 0 \leq r \leq 3,0 \leq \theta \leq 2 \pi,\left|\mathbf{r}_{\theta} \times \mathbf{r}_{r}\right|=r$,
$\iint_{S_{2}}\left(x^{2}+y^{2}+z^{2}\right) d S=\int_{0}^{2 \pi} \int_{0}^{3}\left(r^{2}+4\right) r d r d \theta=2 \pi\left(\frac{81}{4}+18\right)=\frac{153}{2} \pi$.
On $S_{3}: \mathbf{r}(\theta, r)=r \cos \theta \mathbf{i}+r \sin \theta \mathbf{j}, 0 \leq r \leq 3,0 \leq \theta \leq 2 \pi,\left|\mathbf{r}_{\theta} \times \mathbf{r}_{r}\right|=r$,
$\iint_{S_{3}}\left(x^{2}+y^{2}+z^{2}\right) d S=\int_{0}^{2 \pi} \int_{0}^{3}\left(r^{2}+0\right) r d r d \theta=2 \pi\left(\frac{81}{4}\right)=\frac{81}{2} \pi$.
Hence $\iint_{S}\left(x^{2}+y^{2}+z^{2}\right) d S=124 \pi+\frac{153}{2} \pi+\frac{81}{2} \pi=241 \pi$.
21. From Exercise 5, $\mathbf{r}(u, v)=(u+v) \mathbf{i}+(u-v) \mathbf{j}+(1+2 u+v) \mathbf{k}, 0 \leq u \leq 2,0 \leq v \leq 1$, and $\mathbf{r}_{u} \times \mathbf{r}_{v}=3 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$.

Then

$$
\begin{aligned}
\mathbf{F}(\mathbf{r}(u, v)) & =(1+2 u+v) e^{(u+v)(u-v)} \mathbf{i}-3(1+2 u+v) e^{(u+v)(u-v)} \mathbf{j}+(u+v)(u-v) \mathbf{k} \\
& =(1+2 u+v) e^{u^{2}-v^{2}} \mathbf{i}-3(1+2 u+v) e^{u^{2}-v^{2}} \mathbf{j}+\left(u^{2}-v^{2}\right) \mathbf{k}
\end{aligned}
$$

Because the z-component of $\mathbf{r}_{u} \times \mathbf{r}_{v}$ is negative we use $-\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right)$ in Formula 9 for the upward orientation:

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F} \cdot\left(-\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right)\right) d A=\int_{0}^{1} \int_{0}^{2}\left[-3(1+2 u+v) e^{u^{2}-v^{2}}+3(1+2 u+v) e^{u^{2}-v^{2}}+2\left(u^{2}-v^{2}\right)\right] d u d v
$$

$$
=\int_{0}^{1} \int_{0}^{2} 2\left(u^{2}-v^{2}\right) d u d v=2 \int_{0}^{1}\left[\frac{1}{3} u^{3}-u v^{2}\right]_{u=0}^{u=2} d v=2 \int_{0}^{1}\left(\frac{8}{3}-2 v^{2}\right) d v
$$

$$
=2\left[\frac{8}{3} v-\frac{2}{3} v^{3}\right]_{0}^{1}=2\left(\frac{8}{3}-\frac{2}{3}\right)=4
$$

22. $\mathbf{r}(u, v)=\langle u \cos v, u \sin v, v\rangle, 0 \leq u \leq 1,0 \leq v \leq \pi$ and
$\mathbf{r}_{u} \times \mathbf{r}_{v}=\langle\cos v, \sin v, 0\rangle \times\langle-u \sin v, u \cos v, 1\rangle=\langle\sin v,-\cos v, u\rangle$. Here $\mathbf{F}(\mathbf{r}(u, v))=v \mathbf{i}+u \sin v \mathbf{j}+u \cos v \mathbf{k}$ and,
by Formula 9,

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{D} \mathbf{F} \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A=\int_{0}^{1} \int_{0}^{\pi}\left(v \sin v-u \sin v \cos v+u^{2} \cos v\right) d v d u \\
& \left.=\int_{0}^{1}\left[\sin v-v \cos v-\frac{1}{2} u \sin ^{2} v+u^{2} \sin v\right]_{v=0}^{v=\pi} d u=\int_{0}^{1} \pi d u=\pi u\right]_{0}^{1}=\pi
\end{aligned}
$$

23. $\mathbf{F}(x, y, z)=x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k}, z=g(x, y)=4-x^{2}-y^{2}$, and D is the square $[0,1] \times[0,1]$, so by Equation 10

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{D}[-x y(-2 x)-y z(-2 y)+z x] d A=\int_{0}^{1} \int_{0}^{1}\left[2 x^{2} y+2 y^{2}\left(4-x^{2}-y^{2}\right)+x\left(4-x^{2}-y^{2}\right)\right] d y d x \\
& =\int_{0}^{1}\left(\frac{1}{3} x^{2}+\frac{11}{3} x-x^{3}+\frac{34}{15}\right) d x=\frac{713}{180}
\end{aligned}
$$

24. $\mathbf{F}(x, y, z)=-x \mathbf{i}-y \mathbf{j}+z^{3} \mathbf{k}, z=g(x, y)=\sqrt{x^{2}+y^{2}}$, and D is the annular region $\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 9\right\}$. Since S has downward orientation, we have

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =-\iint_{D}\left[-(-x)\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)-(-y)\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)+z^{3}\right] d A \\
& =-\iint_{D}\left[\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}}}+\left(\sqrt{x^{2}+y^{2}}\right)^{3}\right] d A=-\int_{0}^{2 \pi} \int_{1}^{3}\left(\frac{r^{2}}{r}+r^{3}\right) r d r d \theta \\
& =-\int_{0}^{2 \pi} d \theta \int_{1}^{3}\left(r^{2}+r^{4}\right) d r=-[\theta]_{0}^{2 \pi}\left[\frac{1}{3} r^{3}+\frac{1}{5} r^{5}\right]_{1}^{3} \\
& =-2 \pi\left(9+\frac{243}{5}-\frac{1}{3}-\frac{1}{5}\right)=-\frac{1712}{15} \pi
\end{aligned}
$$

25. $\mathbf{F}(x, y, z)=x \mathbf{i}-z \mathbf{j}+y \mathbf{k}, z=g(x, y)=\sqrt{4-x^{2}-y^{2}}$ and D is the quarter disk $\left\{(x, y) \mid 0 \leq x \leq 2,0 \leq y \leq \sqrt{4-x^{2}}\right\} . \quad S$ has downward orientation, so by Formula 10,

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =-\iint_{D}\left[-x \cdot \frac{1}{2}\left(4-x^{2}-y^{2}\right)^{-1 / 2}(-2 x)-(-z) \cdot \frac{1}{2}\left(4-x^{2}-y^{2}\right)^{-1 / 2}(-2 y)+y\right] d A \\
& =-\iint_{D}\left(\frac{x^{2}}{\sqrt{4-x^{2}-y^{2}}}-\sqrt{4-x^{2}-y^{2}} \cdot \frac{y}{\sqrt{4-x^{2}-y^{2}}}+y\right) d A \\
& =-\iint_{D} x^{2}\left(4-\left(x^{2}+y^{2}\right)\right)^{-1 / 2} d A=-\int_{0}^{\pi / 2} \int_{0}^{2}(r \cos \theta)^{2}\left(4-r^{2}\right)^{-1 / 2} r d r d \theta \\
& =-\int_{0}^{\pi / 2} \cos ^{2} \theta d \theta \int_{0}^{2} r^{3}\left(4-r^{2}\right)^{-1 / 2} d r \quad\left[\operatorname{let} u=4-r^{2} \Rightarrow r^{2}=4-u \text { and }-\frac{1}{2} d u=r d r\right] \\
& =-\int_{0}^{\pi / 2}\left(\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right) d \theta \int_{4}^{0}-\frac{1}{2}(4-u)(u)^{-1 / 2} d u \\
& =-\left[\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{\pi / 2}\left(-\frac{1}{2}\right)\left[8 \sqrt{u}-\frac{2}{3} u^{3 / 2}\right]_{4}^{0}=-\frac{\pi}{4}\left(-\frac{1}{2}\right)\left(-16+\frac{16}{3}\right)=-\frac{4}{3} \pi
\end{aligned}
$$

26. $\mathbf{F}(x, y, z)=x z \mathbf{i}+x \mathbf{j}+y \mathbf{k}$

Using spherical coordinates, S is given by $x=5 \sin \phi \cos \theta, y=5 \sin \phi \sin \theta, z=5 \cos \phi, 0 \leq \theta \leq \pi$,
$0 \leq \phi \leq \pi . \quad \mathbf{F}(\mathbf{r}(\phi, \theta))=(5 \sin \phi \cos \theta)(5 \cos \phi) \mathbf{i}+(5 \sin \phi \cos \theta) \mathbf{j}+(5 \sin \phi \sin \theta) \mathbf{k}$ and
$\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}=25 \sin ^{2} \phi \cos \theta \mathbf{i}+25 \sin ^{2} \phi \sin \theta \mathbf{j}+25 \cos \phi \sin \phi \mathbf{k}$, so
$\mathbf{F}(\mathbf{r}(\phi, \theta)) \cdot\left(\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right)=625 \sin ^{3} \phi \cos \phi \cos ^{2} \theta+125 \sin ^{3} \phi \cos \theta \sin \theta+125 \sin ^{2} \phi \cos \phi \sin \theta$

Then

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{D}\left[\mathbf{F}(\mathbf{r}(\phi, \theta)) \cdot\left(\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right)\right] d A \\
& =\int_{0}^{\pi} \int_{0}^{\pi}\left(625 \sin ^{3} \phi \cos \phi \cos ^{2} \theta+125 \sin ^{3} \phi \cos \theta \sin \theta+125 \sin ^{2} \phi \cos \phi \sin \theta\right) d \theta d \phi \\
& =125 \int_{0}^{\pi}\left[5 \sin ^{3} \phi \cos \phi\left(\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right)+\sin ^{3} \phi\left(\frac{1}{2} \sin ^{2} \theta\right)+\sin ^{2} \phi \cos \phi(-\cos \theta)\right]_{\theta=0}^{\theta=\pi} d \phi \\
& =125 \int_{0}^{\pi}\left(\frac{5}{2} \pi \sin ^{3} \phi \cos \phi+2 \sin ^{2} \phi \cos \phi\right) d \phi=125\left[\frac{5}{2} \pi \cdot \frac{1}{4} \sin ^{4} \phi+2 \cdot \frac{1}{3} \sin ^{3} \phi\right]_{0}^{\pi}=0
\end{aligned}
$$

27. Let S_{1} be the paraboloid $y=x^{2}+z^{2}, 0 \leq y \leq 1$ and S_{2} the disk $x^{2}+z^{2} \leq 1, y=1$. Since S is a closed surface, we use the outward orientation.

On $S_{1}: \mathbf{F}(\mathbf{r}(x, z))=\left(x^{2}+z^{2}\right) \mathbf{j}-z \mathbf{k}$ and $\mathbf{r}_{x} \times \mathbf{r}_{z}=2 x \mathbf{i}-\mathbf{j}+2 z \mathbf{k}$ (since the \mathbf{j}-component must be negative on $\left.S_{1}\right)$. Then

$$
\begin{aligned}
\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S} & =\iint_{x^{2}+z^{2} \leq 1}\left[-\left(x^{2}+z^{2}\right)-2 z^{2}\right] d A=-\int_{0}^{2 \pi} \int_{0}^{1}\left(r^{2}+2 r^{2} \sin ^{2} \theta\right) r d r d \theta \\
& =-\int_{0}^{2 \pi} \int_{0}^{1} r^{3}\left(1+2 \sin ^{2} \theta\right) d r d \theta=-\int_{0}^{2 \pi}(1+1-\cos 2 \theta) d \theta \int_{0}^{1} r^{3} d r \\
& =-\left[2 \theta-\frac{1}{2} \sin 2 \theta\right]_{0}^{2 \pi}\left[\frac{1}{4} r^{4}\right]_{0}^{1}=-4 \pi \cdot \frac{1}{4}=-\pi
\end{aligned}
$$

On $S_{2}: \mathbf{F}(\mathbf{r}(x, z))=\mathbf{j}-z \mathbf{k}$ and $\mathbf{r}_{z} \times \mathbf{r}_{x}=\mathbf{j}$. Then $\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}=\underset{x^{2}+z^{2}<1}{\iint_{1}}(1) d A=\pi$.
Hence $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=-\pi+\pi=0$.
28. $\mathbf{F}(x, y, z)=x y \mathbf{i}+4 x^{2} \mathbf{j}+y z \mathbf{k}, z=g(x, y)=x e^{y}$, and D is the square $[0,1] \times[0,1]$, so by Equation 10

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{D}\left[-x y\left(e^{y}\right)-4 x^{2}\left(x e^{y}\right)+y z\right] d A=\int_{0}^{1} \int_{0}^{1}\left(-x y e^{y}-4 x^{3} e^{y}+x y e^{y}\right) d y d x \\
& =\int_{0}^{1}\left[-4 x^{3} e^{y}\right]_{y=0}^{y=1} d x=(e-1) \int_{0}^{1}\left(-4 x^{3}\right) d x=1-e
\end{aligned}
$$

29. Here S consists of the six faces of the cube as labeled in the figure. On S_{1} :
$\mathbf{F}=\mathbf{i}+2 y \mathbf{j}+3 z \mathbf{k}, \mathbf{r}_{y} \times \mathbf{r}_{z}=\mathbf{i}$ and $\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}=\int_{-1}^{1} \int_{-1}^{1} d y d z=4 ;$
$S_{2}: \mathbf{F}=x \mathbf{i}+2 \mathbf{j}+3 z \mathbf{k}, \mathbf{r}_{z} \times \mathbf{r}_{x}=\mathbf{j}$ and $\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}=\int_{-1}^{1} \int_{-1}^{1} 2 d x d z=8 ;$
$S_{3}: \mathbf{F}=x \mathbf{i}+2 y \mathbf{j}+3 \mathbf{k}, \mathbf{r}_{x} \times \mathbf{r}_{y}=\mathbf{k}$ and $\iint_{S_{3}} \mathbf{F} \cdot d \mathbf{S}=\int_{-1}^{1} \int_{-1}^{1} 3 d x d y=12 ;$
$S_{4}: \mathbf{F}=-\mathbf{i}+2 y \mathbf{j}+3 z \mathbf{k}, \mathbf{r}_{z} \times \mathbf{r}_{y}=-\mathbf{i}$ and $\iint_{S_{4}} \mathbf{F} \cdot d \mathbf{S}=4$;
$S_{5}: \mathbf{F}=x \mathbf{i}-2 \mathbf{j}+3 z \mathbf{k}, \mathbf{r}_{x} \times \mathbf{r}_{z}=-\mathbf{j}$ and $\iint_{S_{5}} \mathbf{F} \cdot d \mathbf{S}=8$;

$S_{6}: \mathbf{F}=x \mathbf{i}+2 y \mathbf{j}-3 \mathbf{k}, \mathbf{r}_{y} \times \mathbf{r}_{x}=-\mathbf{k}$ and $\iint_{S_{6}} \mathbf{F} \cdot d \mathbf{S}=\int_{-1}^{1} \int_{-1}^{1} 3 d x d y=12$.
Hence $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\sum_{i=1}^{6} \iint_{S_{i}} \mathbf{F} \cdot d \mathbf{S}=48$.
30. Here S consists of three surfaces: S_{1}, the lateral surface of the cylinder; S_{2}, the front formed by the plane $x+y=2$; and the back, S_{3}, in the plane $y=0$.

On $S_{1}: \mathbf{F}(\mathbf{r}(\theta, y))=\sin \theta \mathbf{i}+y \mathbf{j}+5 \mathbf{k}$ and $\mathbf{r}_{\theta} \times \mathbf{r}_{y}=\sin \theta \mathbf{i}+\cos \theta \mathbf{k} \quad \Rightarrow$

$$
\begin{aligned}
\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S} & =\int_{0}^{2 \pi} \int_{0}^{2-\sin \theta}\left(\sin ^{2} \theta+5 \cos \theta\right) d y d \theta \\
& =\int_{0}^{2 \pi}\left(2 \sin ^{2} \theta+10 \cos \theta-\sin ^{3} \theta-5 \sin \theta \cos \theta\right) d \theta=2 \pi
\end{aligned}
$$

0.0.s Questions Solutions Fundamental Theorem line INTEGRAL

Comparing this equation with Equation 16, we see that

$$
P(A)+K(A)=P(B)+K(B)
$$

which says that if an object moves from one point A to another point B under the influence of a conservative force field, then the sum of its potential energy and its kinetic energy remains constant. This is called the Law of Conservation of Energy and it is the reason the vector field is called conservative.

16.3 Exercises

1. The figure shows a curve C and a contour map of a function f whose gradient is continuous. Find $\int_{C} \nabla f \cdot d \mathbf{r}$.

2. A table of values of a function f with continuous gradient is given. Find $\int_{C} \nabla f \cdot d \mathbf{r}$, where C has parametric equations

$$
x=t^{2}+1 \quad y=t^{3}+t \quad 0 \leqslant t \leqslant 1
$$

x	0	1	2
0	1	6	4
1	3	5	7
2	8	2	9

3-10 Determine whether or not \mathbf{F} is a conservative vector field. If it is, find a function f such that $\mathbf{F}=\nabla f$.

$$
\begin{aligned}
& \text { 3. } \mathbf{F}(x, y)=(2 x-3 y) \mathbf{i}+(-3 x+4 y-8) \mathbf{j} \\
& \text { 4. } \mathbf{F}(x, y)=e^{x} \sin y \mathbf{i}+e^{x} \cos y \mathbf{j} \\
& \text { 5. } \mathbf{F}(x, y)=e^{x} \cos y \mathbf{i}+e^{x} \sin y \mathbf{j} \\
& \text { 6. } \mathbf{F}(x, y)=\left(3 x^{2}-2 y^{2}\right) \mathbf{i}+(4 x y+3) \mathbf{j} \\
& \text { 7.. } \mathbf{F}(x, y)=\left(y e^{x}+\sin y\right) \mathbf{i}+\left(e^{x}+x \cos y\right) \mathbf{j} \\
& \text { 8. } \mathbf{F}(x, y)=\left(2 x y+y^{-2}\right) \mathbf{i}+\left(x^{2}-2 x y^{-3}\right) \mathbf{j}, \quad y>0
\end{aligned}
$$

9. $\mathbf{F}(x, y)=\left(\ln y+2 x y^{3}\right) \mathbf{i}+\left(3 x^{2} y^{2}+x / y\right) \mathbf{j}$
10. $\mathbf{F}(x, y)=(x y \cosh x y+\sinh x y) \mathbf{i}+\left(x^{2} \cosh x y\right) \mathbf{j}$
11. The figure shows the vector field $\mathbf{F}(x, y)=\left\langle 2 x y, x^{2}\right\rangle$ and three curves that start at $(1,2)$ and end at $(3,2)$.
(a) Explain why $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ has the same value for all three curves.
(b) What is this common value?

12-18 (a) Find a function f such that $\mathbf{F}=\nabla f$ and (b) use part (a) to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the given curve C.
12. $\mathbf{F}(x, y)=x^{2} \mathbf{i}+y^{2} \mathbf{j}$,
C is the arc of the parabola $y=2 x^{2}$ from $(-1,2)$ to $(2,8)$

$$
\text { 13. } \begin{aligned}
& \mathbf{F}(x, y)=x y^{2} \mathbf{i}+x^{2} y \mathbf{j}, \\
& C: \mathbf{r}(t)=\left\langle t+\sin \frac{1}{2} \pi t, t+\cos \frac{1}{2} \pi t\right\rangle, \quad 0 \leqslant t \leqslant 1
\end{aligned}
$$

14. $\mathbf{F}(x, y)=(1+x y) e^{x y} \mathbf{i}+x^{2} e^{x y} \mathbf{j}$,
$C: \mathbf{r}(t)=\cos t \mathbf{i}+2 \sin t \mathbf{j}, \quad 0 \leqslant t \leqslant \pi / 2$
15. $\mathbf{F}(x, y, z)=y z \mathbf{i}+x z \mathbf{j}+(x y+2 z) \mathbf{k}$,
C is the line segment from $(1,0,-2)$ to $(4,6,3)$
16. $\mathbf{F}(x, y, z)=\left(y^{2} z+2 x z^{2}\right) \mathbf{i}+2 x y z \mathbf{j}+\left(x y^{2}+2 x^{2} z\right) \mathbf{k}$, $C: x=\sqrt{t}, y=t+1, z=t^{2}, \quad 0 \leqslant t \leqslant 1$
17. $\mathbf{F}(x, y, z)=y z e^{x z} \mathbf{i}+e^{x z} \mathbf{j}+x y e^{x z} \mathbf{k}$,
$C: \mathbf{r}(t)=\left(t^{2}+1\right) \mathbf{i}+\left(t^{2}-1\right) \mathbf{j}+\left(t^{2}-2 t\right) \mathbf{k}, \quad 0 \leqslant t \leqslant 2$
18. $\mathbf{F}(x, y, z)=\sin y \mathbf{i}+(x \cos y+\cos z) \mathbf{j}-y \sin z \mathbf{k}$,
$C: \mathbf{r}(t)=\sin t \mathbf{i}+t \mathbf{j}+2 t \mathbf{k}, \quad 0 \leqslant t \leqslant \pi / 2$

19-20 Show that the line integral is independent of path and evaluate the integral.
19. $\int_{C} 2 x e^{-y} d x+\left(2 y-x^{2} e^{-y}\right) d y$,
C is any path from $(1,0)$ to $(2,1)$
$20 \int_{C} \sin y d x+(x \cos y-\sin y) d y$,
C is any path from $(2,0)$ to $(1, \pi)$
21. Suppose you're asked to determine the curve that requires the least work for a force field \mathbf{F} to move a particle from one point to another point. You decide to check first whether \mathbf{F} is conservative, and indeed it turns out that it is. How would you reply to the request?

Suppose an experiment determines that the amount of work required for a force field \mathbf{F} to move a particle from the point $(1,2)$ to the point $(5,-3)$ along a curve C_{1} is 1.2 J and the work done by \mathbf{F} in moving the particle along another curve C_{2} between the same two points is 1.4 J . What can you say about \mathbf{F} ? Why?

23-24 Find the work done by the force field \mathbf{F} in moving an object from P to Q.
23. $\mathbf{F}(x, y)=2 y^{3 / 2} \mathbf{i}+3 x \sqrt{y} \mathbf{j} ; \quad P(1,1), Q(2,4)$
24. $\mathbf{F}(x, y)=e^{-y} \mathbf{i}-x e^{-y} \mathbf{j} ; \quad P(0,1), Q(2,0)$
$25-26$ Is the vector field shown in the figure conservative? Explain.
25.

26.

27. If $\mathbf{F}(x, y)=\sin y \mathbf{i}+(1+x \cos y) \mathbf{j}$, use a plot to guess whether \mathbf{F} is conservative. Then determine whether your guess is correct.
28. Let $\mathbf{F}=\nabla f$, where $f(x, y)=\sin (x-2 y)$. Find curves C_{1} and C_{2} that are not closed and satisfy the equation.
(a) $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=0$
(b) $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=1$
29. Show that if the vector field $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is conservative and P, Q, R have continuous first-order partial derivatives, then

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \quad \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x} \quad \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}
$$

30. Use Exercise 29 to show that the line integral
$\int_{C} y d x+x d y+x y z d z$ is not independent of path.

31-34 Determine whether or not the given set is (a) open,
(b) connected, and (c) simply-connected.
31. $\{(x, y) \mid 0<y<3\}$
32. $\{(x, y)|1<|x|<2\}$
33. $\left\{(x, y) \mid 1 \leqslant x^{2}+y^{2} \leqslant 4, y \geqslant 0\right\}$
34. $\{(x, y) \mid(x, y) \neq(2,3)\}$
35. Let $\mathbf{F}(x, y)=\frac{-y \mathbf{i}+x \mathbf{j}}{x^{2}+y^{2}}$.
(a) Show that $\partial P / \partial y=\partial Q / \partial x$.
(b) Show that $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is not independent of path. [Hint: Compute $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}$ and $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$, where C_{1} and C_{2} are the upper and lower halves of the circle $x^{2}+y^{2}=1$ from $(1,0)$ to $(-1,0)$.] Does this contradict Theorem 6?
36. (a) Suppose that \mathbf{F} is an inverse square force field, that is,

$$
\mathbf{F}(\mathbf{r})=\frac{c \mathbf{r}}{|\mathbf{r}|^{3}}
$$

for some constant c, where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. Find the work done by \mathbf{F} in moving an object from a point P_{1} along a path to a point P_{2} in terms of the distances d_{1} and d_{2} from these points to the origin.
(b) An example of an inverse square field is the gravitational field $\mathbf{F}=-(m M G) \mathbf{r} /|\mathbf{r}|^{3}$ discussed in Example 4 in Section 16.1. Use part (a) to find the work done by the gravitational field when the earth moves from aphelion (at a maximum distance of $1.52 \times 10^{8} \mathrm{~km}$ from the sun) to perihelion (at a minimum distance of $1.47 \times 10^{8} \mathrm{~km}$). (Use the values $m=5.97 \times 10^{24} \mathrm{~kg}$, $M=1.99 \times 10^{30} \mathrm{~kg}$, and $G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$.)
(c) Another example of an inverse square field is the electric force field $\mathbf{F}=\varepsilon q Q \mathbf{r} /|\mathbf{r}|^{3}$ discussed in Example 5 in Section 16.1. Suppose that an electron with a charge of $-1.6 \times 10^{-19} \mathrm{C}$ is located at the origin. A positive unit charge is positioned a distance $10^{-12} \mathrm{~m}$ from the electron and moves to a position half that distance from the electron. Use part (a) to find the work done by the electric force field. (Use the value $\varepsilon=8.985 \times 10^{9}$.)
49. Let $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. Then

$$
\begin{aligned}
\int_{C} \mathbf{v} \cdot d \mathbf{r} & =\int_{a}^{b}\left\langle v_{1}, v_{2}, v_{3}\right\rangle \cdot\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle d t=\int_{a}^{b}\left[v_{1} x^{\prime}(t)+v_{2} y^{\prime}(t)+v_{3} z^{\prime}(t)\right] d t \\
& =\left[v_{1} x(t)+v_{2} y(t)+v_{3} z(t)\right]_{a}^{b}=\left[v_{1} x(b)+v_{2} y(b)+v_{3} z(b)\right]-\left[v_{1} x(a)+v_{2} y(a)+v_{3} z(a)\right] \\
& =v_{1}[x(b)-x(a)]+v_{2}[y(b)-y(a)]+v_{3}[z(b)-z(a)] \\
& =\left\langle v_{1}, v_{2}, v_{3}\right\rangle \cdot\langle x(b)-x(a), y(b)-y(a), z(b)-z(a)\rangle \\
& =\left\langle v_{1}, v_{2}, v_{3}\right\rangle \cdot[\langle x(b), y(b), z(b)\rangle-\langle x(a), y(a), z(a)\rangle]=\mathbf{v} \cdot[\mathbf{r}(b)-\mathbf{r}(a)]
\end{aligned}
$$

50. If $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ then

$$
\begin{aligned}
\int_{C} \mathbf{r} \cdot d \mathbf{r} & =\int_{a}^{b}\langle x(t), y(t), z(t)\rangle \cdot\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle d t=\int_{a}^{b}\left[x(t) x^{\prime}(t)+y(t) y^{\prime}(t)+z(t) z^{\prime}(t)\right] d t \\
& =\left[\frac{1}{2}[x(t)]^{2}+\frac{1}{2}[y(t)]^{2}+\frac{1}{2}[z(t)]^{2}\right]_{a}^{b} \\
& =\frac{1}{2}\left\{\left([x(b)]^{2}+[y(b)]^{2}+[z(b)]^{2}\right)-\left([x(a)]^{2}+[y(a)]^{2}+[z(a)]^{2}\right)\right\} \\
& =\frac{1}{2}\left[|\mathbf{r}(b)|^{2}-|\mathbf{r}(a)|^{2}\right]
\end{aligned}
$$

51. The work done in moving the object is $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \mathbf{F} \cdot \mathbf{T} d s$. We can approximate this integral by dividing C into 7 segments of equal length $\Delta s=2$ and approximating $\mathbf{F} \cdot \mathbf{T}$, that is, the tangential component of force, at a point $\left(x_{i}^{*}, y_{i}^{*}\right)$ on each segment. Since C is composed of straight line segments, $\mathbf{F} \cdot \mathbf{T}$ is the scalar projection of each force vector onto C. If we choose $\left(x_{i}^{*}, y_{i}^{*}\right)$ to be the point on the segment closest to the origin, then the work done is
$\int_{C} \mathbf{F} \cdot \mathbf{T} d s \approx \sum_{i=1}^{7}\left[\mathbf{F}\left(x_{i}^{*}, y_{i}^{*}\right) \cdot \mathbf{T}\left(x_{i}^{*}, y_{i}^{*}\right)\right] \Delta s=[2+2+2+2+1+1+1](2)=22$. Thus, we estimate the work done to be approximately 22 J .
52. Use the orientation pictured in the figure. Then since \mathbf{B} is tangent to any circle that lies in the plane perpendicular to the wire, $\mathbf{B}=|\mathbf{B}| \mathbf{T}$ where \mathbf{T} is the unit tangent to the circle $C: x=r \cos \theta, \quad y=r \sin \theta$. Thus $\mathbf{B}=|\mathbf{B}|\langle-\sin \theta, \cos \theta\rangle$. Then $\int_{C} \mathbf{B} \cdot d \mathbf{r}=\int_{0}^{2 \pi}|\mathbf{B}|\langle-\sin \theta, \cos \theta\rangle \cdot\langle-r \sin \theta, r \cos \theta\rangle d \theta=\int_{0}^{2 \pi}|\mathbf{B}| r d \theta=2 \pi r|\mathbf{B}|$. (Note that $|\mathbf{B}|$ here is the magnitude of the field at a distance r from the wire's center.) But by Ampere's Law $\int_{C} \mathbf{B} \cdot d \mathbf{r}=\mu_{0} I$. Hence $|\mathbf{B}|=\mu_{0} I /(2 \pi r)$.

16.3 The Fundamental Theorem for Line Integrals

1. C appears to be a smooth curve, and since ∇f is continuous, we know f is differentiable. Then Theorem 2 says that the value of $\int_{C} \nabla f \cdot d \mathbf{r}$ is simply the difference of the values of f at the terminal and initial points of C. From the graph, this is $50-10=40$.
2. C is represented by the vector function $\mathbf{r}(t)=\left(t^{2}+1\right) \mathbf{i}+\left(t^{3}+t\right) \mathbf{j}, 0 \leq t \leq 1$, so $\mathbf{r}^{\prime}(t)=2 t \mathbf{i}+\left(3 t^{2}+1\right) \mathbf{j}$. Since $3 t^{2}+1 \neq 0$, we have $\mathbf{r}^{\prime}(t) \neq \mathbf{0}$, thus C is a smooth curve. ∇f is continuous, and hence f is differentiable, so by Theorem 2 we have $\int_{C} \nabla f \cdot d \mathbf{r}=f(\mathbf{r}(1))-f(\mathbf{r}(0))=f(2,2)-f(1,0)=9-3=6$.
3. $\partial(2 x-3 y) / \partial y=-3=\partial(-3 x+4 y-8) / \partial x$ and the domain of \mathbf{F} is \mathbb{R}^{2} which is open and simply-connected, so by Theorem $6 \mathbf{F}$ is conservative. Thus, there exists a function f such that $\nabla f=\mathbf{F}$, that is, $f_{x}(x, y)=2 x-3 y$ and $f_{y}(x, y)=-3 x+4 y-8$. But $f_{x}(x, y)=2 x-3 y$ implies $f(x, y)=x^{2}-3 x y+g(y)$ and differentiating both sides of this equation with respect to y gives $f_{y}(x, y)=-3 x+g^{\prime}(y)$. Thus $-3 x+4 y-8=-3 x+g^{\prime}(y)$ so $g^{\prime}(y)=4 y-8$ and $g(y)=2 y^{2}-8 y+K$ where K is a constant. Hence $f(x, y)=x^{2}-3 x y+2 y^{2}-8 y+K$ is a potential function for \mathbf{F}.
4. $\partial\left(e^{x} \sin y\right) / \partial y=e^{x} \cos y=\partial\left(e^{x} \cos y\right) / \partial x$ and the domain of \mathbf{F} is \mathbb{R}^{2}. Hence \mathbf{F} is conservative so there exists a function f such that $\nabla f=\mathbf{F}$. Then $f_{x}(x, y)=e^{x} \sin y$ implies $f(x, y)=e^{x} \sin y+g(y)$ and $f_{y}(x, y)=e^{x} \cos y+g^{\prime}(y)$. But $f_{y}(x, y)=e^{x} \cos y$ so $g^{\prime}(y)=0 \Rightarrow g(y)=K$. Then $f(x, y)=e^{x} \sin y+K$ is a potential function for \mathbf{F}.
5. $\partial\left(e^{x} \cos y\right) / \partial y=-e^{x} \sin y, \partial\left(e^{x} \sin y\right) / \partial x=e^{x} \sin y$. Since these are not equal, \mathbf{F} is not conservative.
6. $\partial\left(3 x^{2}-2 y^{2}\right) / \partial y=-4 y, \partial(4 x y+3) / \partial x=4 y$. Since these are not equal, \mathbf{F} is not conservative.
7. $\partial\left(y e^{x}+\sin y\right) / \partial y=e^{x}+\cos y=\partial\left(e^{x}+x \cos y\right) / \partial x$ and the domain of \mathbf{F} is \mathbb{R}^{2}. Hence \mathbf{F} is conservative so there exists a function f such that $\nabla f=\mathbf{F}$. Then $f_{x}(x, y)=y e^{x}+\sin y$ implies $f(x, y)=y e^{x}+x \sin y+g(y)$ and $f_{y}(x, y)=e^{x}+x \cos y+g^{\prime}(y)$. But $f_{y}(x, y)=e^{x}+x \cos y$ so $g(y)=K$ and $f(x, y)=y e^{x}+x \sin y+K$ is a potential function for \mathbf{F}.
8. $\partial\left(2 x y+y^{-2}\right) / \partial y=2 x-2 y^{-3}=\partial\left(x^{2}-2 x y^{-3}\right) / \partial x$ and the domain of \mathbf{F} is $\{(x, y) \mid y>0\}$ which is open and simply-connected. Hence \mathbf{F} is conservative, so there exists a function f such that $\nabla f=\mathbf{F}$. Then $f_{x}(x, y)=2 x y+y^{-2}$ implies $f(x, y)=x^{2} y+x y^{-2}+g(y)$ and $f_{y}(x, y)=x^{2}-2 x y^{-3}+g^{\prime}(y)$. But $f_{y}(x, y)=x^{2}-2 x y^{-3}$ so $g^{\prime}(y)=0 \quad \Rightarrow \quad g(y)=K$. Then $f(x, y)=x^{2} y+x y^{-2}+K$ is a potential function for \mathbf{F}.
9. $\partial\left(\ln y+2 x y^{3}\right) / \partial y=1 / y+6 x y^{2}=\partial\left(3 x^{2} y^{2}+x / y\right) / \partial x$ and the domain of \mathbf{F} is $\{(x, y) \mid y>0\}$ which is open and simply connected. Hence \mathbf{F} is conservative so there exists a function f such that $\nabla f=\mathbf{F}$. Then $f_{x}(x, y)=\ln y+2 x y^{3}$ implies $f(x, y)=x \ln y+x^{2} y^{3}+g(y)$ and $f_{y}(x, y)=x / y+3 x^{2} y^{2}+g^{\prime}(y)$. But $f_{y}(x, y)=3 x^{2} y^{2}+x / y$ so $g^{\prime}(y)=0 \quad \Rightarrow$ $g(y)=K$ and $f(x, y)=x \ln y+x^{2} y^{3}+K$ is a potential function for \mathbf{F}.
10. $\frac{\partial(x y \cosh x y+\sinh x y)}{\partial y}=x^{2} y \sinh x y+x \cosh x y+x \cosh x y=x^{2} y \sinh x y+2 x \cosh x y=\frac{\partial\left(x^{2} \cosh x y\right)}{\partial x}$ and the domain of \mathbf{F} is \mathbb{R}^{2}. Thus \mathbf{F} is conservative, so there exists a function f such that $\nabla f=\mathbf{F}$. Then $f_{x}(x, y)=x y \cosh x y+\sinh x y$ implies $f(x, y)=x \sinh x y+g(y) \Rightarrow f_{y}(x, y)=x^{2} \cosh x y+g^{\prime}(y)$. But $f_{y}(x, y)=x^{2} \cosh x y$ so $g(y)=K$ and $f(x, y)=x \sinh x y+K$ is a potential function for \mathbf{F}.
11. (a) \mathbf{F} has continuous first-order partial derivatives and $\frac{\partial}{\partial y} 2 x y=2 x=\frac{\partial}{\partial x}\left(x^{2}\right)$ on \mathbb{R}^{2}, which is open and simply-connected. Thus, \mathbf{F} is conservative by Theorem 6. Then we know that the line integral of \mathbf{F} is independent of path; in particular, the value of $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ depends only on the endpoints of C. Since all three curves have the same initial and terminal points, $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ will have the same value for each curve.
(b) We first find a potential function f, so that $\nabla f=\mathbf{F}$. We know $f_{x}(x, y)=2 x y$ and $f_{y}(x, y)=x^{2}$. Integrating
$f_{x}(x, y)$ with respect to x, we have $f(x, y)=x^{2} y+g(y)$. Differentiating both sides with respect to y gives $f_{y}(x, y)=x^{2}+g^{\prime}(y)$, so we must have $x^{2}+g^{\prime}(y)=x^{2} \Rightarrow g^{\prime}(y)=0 \Rightarrow g(y)=K$, a constant. Thus $f(x, y)=x^{2} y+K$. All three curves start at $(1,2)$ and end at $(3,2)$, so by Theorem 2 , $\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(3,2)-f(1,2)=18-2=16$ for each curve.
12. (a) $f_{x}(x, y)=x^{2}$ implies $f(x, y)=\frac{1}{3} x^{3}+g(y)$ and $f_{y}(x, y)=0+g^{\prime}(y)$. But $f_{y}(x, y)=y^{2}$ so $g^{\prime}(y)=y^{2} \Rightarrow g(y)=\frac{1}{3} y^{3}+K$. We can take $K=0$, so $f(x, y)=\frac{1}{3} x^{3}+\frac{1}{3} y^{3}$.
(b) $\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(2,8)-f(-1,2)=\left(\frac{8}{3}+\frac{512}{3}\right)-\left(-\frac{1}{3}+\frac{8}{3}\right)=171$.
13. (a) $f_{x}(x, y)=x y^{2}$ implies $f(x, y)=\frac{1}{2} x^{2} y^{2}+g(y)$ and $f_{y}(x, y)=x^{2} y+g^{\prime}(y)$. But $f_{y}(x, y)=x^{2} y$ so $g^{\prime}(y)=0 \Rightarrow$ $g(y)=K$, a constant. We can take $K=0$, so $f(x, y)=\frac{1}{2} x^{2} y^{2}$.
(b) The initial point of C is $\mathbf{r}(0)=(0,1)$ and the terminal point is $\mathbf{r}(1)=(2,1)$, so $\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(2,1)-f(0,1)=2-0=2$.
14. (a) $f_{y}(x, y)=x^{2} e^{x y}$ implies $f(x, y)=x e^{x y}+g(x) \Rightarrow f_{x}(x, y)=x y e^{x y}+e^{x y}+g^{\prime}(x)=(1+x y) e^{x y}+g^{\prime}(x)$. But $f_{x}(x, y)=(1+x y) e^{x y}$ so $g^{\prime}(x)=0 \Rightarrow g(x)=K$. We can take $K=0$, so $f(x, y)=x e^{x y}$.
(b) The initial point of C is $\mathbf{r}(0)=(1,0)$ and the terminal point is $\mathbf{r}(\pi / 2)=(0,2)$, so
$\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(0,2)-f(1,0)=0-e^{0}=-1$.
15. (a) $f_{x}(x, y, z)=y z$ implies $f(x, y, z)=x y z+g(y, z)$ and so $f_{y}(x, y, z)=x z+g_{y}(y, z)$. But $f_{y}(x, y, z)=x z$ so $g_{y}(y, z)=0 \Rightarrow g(y, z)=h(z)$. Thus $f(x, y, z)=x y z+h(z)$ and $f_{z}(x, y, z)=x y+h^{\prime}(z)$. But $f_{z}(x, y, z)=x y+2 z$, so $h^{\prime}(z)=2 z \quad \Rightarrow \quad h(z)=z^{2}+K$. Hence $f(x, y, z)=x y z+z^{2}(\operatorname{taking} K=0)$.
(b) $\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(4,6,3)-f(1,0,-2)=81-4=77$.
16. (a) $f_{x}(x, y, z)=y^{2} z+2 x z^{2}$ implies $f(x, y, z)=x y^{2} z+x^{2} z^{2}+g(y, z)$ and so $f_{y}(x, y, z)=2 x y z+g_{y}(y, z)$. But $f_{y}(x, y, z)=2 x y z$ so $g_{y}(y, z)=0 \quad \Rightarrow \quad g(y, z)=h(z)$. Thus $f(x, y, z)=x y^{2} z+x^{2} z^{2}+h(z)$ and $f_{z}(x, y, z)=x y^{2}+2 x^{2} z+h^{\prime}(z)$. But $f_{z}(x, y, z)=x y^{2}+2 x^{2} z$, so $h^{\prime}(z)=0 \Rightarrow h(z)=K$. Hence $f(x, y, z)=x y^{2} z+x^{2} z^{2}($ taking $K=0)$.
(b) $t=0$ corresponds to the point $(0,1,0)$ and $t=1$ corresponds to $(1,2,1)$, so $\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(1,2,1)-f(0,1,0)=5-0=5$.
17. (a) $f_{x}(x, y, z)=y z e^{x z}$ implies $f(x, y, z)=y e^{x z}+g(y, z)$ and so $f_{y}(x, y, z)=e^{x z}+g_{y}(y, z)$. But $f_{y}(x, y, z)=e^{x z}$ so $g_{y}(y, z)=0 \Rightarrow g(y, z)=h(z)$. Thus $f(x, y, z)=y e^{x z}+h(z)$ and $f_{z}(x, y, z)=x y e^{x z}+h^{\prime}(z)$. But $f_{z}(x, y, z)=x y e^{x z}$, so $h^{\prime}(z)=0 \quad \Rightarrow \quad h(z)=K$. Hence $f(x, y, z)=y e^{x z}(\operatorname{taking} K=0)$.
(b) $\mathbf{r}(0)=\langle 1,-1,0\rangle, \mathbf{r}(2)=\langle 5,3,0\rangle$ so $\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(5,3,0)-f(1,-1,0)=3 e^{0}+e^{0}=4$.
18. (a) $f_{x}(x, y, z)=\sin y$ implies $f(x, y, z)=x \sin y+g(y, z)$ and so $f_{y}(x, y, z)=x \cos y+g_{y}(y, z)$. But
$f_{y}(x, y, z)=x \cos y+\cos z$ so $g_{y}(y, z)=\cos z \Rightarrow g(y, z)=y \cos z+h(z)$. Thus
$f(x, y, z)=x \sin y+y \cos z+h(z)$ and $f_{z}(x, y, z)=-y \sin z+h^{\prime}(z)$. But $f_{z}(x, y, z)=-y \sin z$, so $h^{\prime}(z)=0 \Rightarrow$ $h(z)=K$. Hence $f(x, y, z)=x \sin y+y \cos z$ (taking $K=0$).
(b) $\mathbf{r}(0)=\langle 0,0,0\rangle, \mathbf{r}(\pi / 2)=\langle 1, \pi / 2, \pi\rangle$ so $\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(1, \pi / 2, \pi)-f(0,0,0)=1-\frac{\pi}{2}-0=1-\frac{\pi}{2}$.
19. The functions $2 x e^{-y}$ and $2 y-x^{2} e^{-y}$ have continuous first-order derivatives on \mathbb{R}^{2} and $\frac{\partial}{\partial y}\left(2 x e^{-y}\right)=-2 x e^{-y}=\frac{\partial}{\partial x}\left(2 y-x^{2} e^{-y}\right)$, so $\mathbf{F}(x, y)=2 x e^{-y} \mathbf{i}+\left(2 y-x^{2} e^{-y}\right) \mathbf{j}$ is a conservative vector field by Theorem 6 and hence the line integral is independent of path. Thus a potential function f exists, and $f_{x}(x, y)=2 x e^{-y}$ implies $f(x, y)=x^{2} e^{-y}+g(y)$ and $f_{y}(x, y)=-x^{2} e^{-y}+g^{\prime}(y)$. But $f_{y}(x, y)=2 y-x^{2} e^{-y}$ so $g^{\prime}(y)=2 y \Rightarrow g(y)=y^{2}+K$. We can take $K=0$, so $f(x, y)=x^{2} e^{-y}+y^{2}$. Then $\int_{C} 2 x e^{-y} d x+\left(2 y-x^{2} e^{-y}\right) d y=f(2,1)-f(1,0)=4 e^{-1}+1-1=4 / e$.
20. The functions $\sin y$ and $x \cos y-\sin y$ have continuous first-order derivatives on \mathbb{R}^{2} and $\frac{\partial}{\partial y}(\sin y)=\cos y=\frac{\partial}{\partial x}(x \cos y-\sin y), \operatorname{so} \mathbf{F}(x, y)=\sin y \mathbf{i}+(x \cos y-\sin y) \mathbf{j}$ is a conservative vector field by Theorem 6 and hence the line integral is independent of path. Thus a potential function f exists, and $f_{x}(x, y)=\sin y$ implies $f(x, y)=x \sin y+g(y)$ and $f_{y}(x, y)=x \cos y+g^{\prime}(y)$. But $f_{y}(x, y)=x \cos y-\sin y$ so $g^{\prime}(y)=-\sin y \Rightarrow g(y)=\cos y+K$. We can take $K=0$, so $f(x, y)=x \sin y+\cos y$. Then $\int_{C} \sin y d x+(x \cos y-\sin y) d y=f(1, \pi)-f(2,0)=-1-1=-2$.
21. If \mathbf{F} is conservative, then $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path. This means that the work done along all piecewise-smooth curves that have the described initial and terminal points is the same. Your reply: It doesn't matter which curve is chosen.
22. The curves C_{1} and C_{2} connect the same two points but $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r} \neq \int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$. Thus \mathbf{F} is not independent of path, and therefore is not conservative.
23. $\mathbf{F}(x, y)=2 y^{3 / 2} \mathbf{i}+3 x \sqrt{y} \mathbf{j}, W=\int_{C} \mathbf{F} \cdot d \mathbf{r}$. Since $\partial\left(2 y^{3 / 2}\right) / \partial y=3 \sqrt{y}=\partial(3 x \sqrt{y}) / \partial x$, there exists a function f such that $\nabla f=\mathbf{F}$. In fact, $f_{x}(x, y)=2 y^{3 / 2} \Rightarrow f(x, y)=2 x y^{3 / 2}+g(y) \Rightarrow f_{y}(x, y)=3 x y^{1 / 2}+g^{\prime}(y)$. But $f_{y}(x, y)=3 x \sqrt{y}$ so $g^{\prime}(y)=0$ or $g(y)=K$. We can take $K=0 \Rightarrow f(x, y)=2 x y^{3 / 2}$. Thus $W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(2,4)-f(1,1)=2(2)(8)-2(1)=30$.
24. $\mathbf{F}(x, y)=e^{-y} \mathbf{i}-x e^{-y} \mathbf{j}, W=\int_{C} \mathbf{F} \cdot d \mathbf{r}$. Since $\frac{\partial}{\partial y}\left(e^{-y}\right)=-e^{-y}=\frac{\partial}{\partial x}\left(-x e^{-y}\right)$, there exists a function f such that $\nabla f=\mathbf{F}$. In fact, $f_{x}=e^{-y} \Rightarrow f(x, y)=x e^{-y}+g(y) \Rightarrow f_{y}=-x e^{-y}+g^{\prime}(y) \quad \Rightarrow \quad g^{\prime}(y)=0$, so we can take $f(x, y)=x e^{-y}$ as a potential function for \mathbf{F}. Thus $W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(2,0)-f(0,1)=2-0=2$.

For functions of two variables the method of Lagrange multipliers is similar to the method just described. To find the extreme values of $f(x, y)$ subject to the constraint $g(x, y)=k$, we look for values of x, y, and λ such that

$$
\nabla f(x, y)=\lambda \nabla g(x, y) \quad \text { and } \quad g(x, y)=k
$$

This amounts to solving three equations in three unknowns:

$$
f_{x}=\lambda g_{x} \quad f_{y}=\lambda g_{y} \quad g(x, y)=k
$$

Our first illustration of Lagrange's method is to reconsider the problem given in Example 6 in Section 14.7.

V EXAMPLE 1 A rectangular box without a lid is to be made from $12 \mathrm{~m}^{2}$ of cardboard. Find the maximum volume of such a box.

SOLUTION As in Example 6 in Section 14.7, we let x, y, and z be the length, width, and height, respectively, of the box in meters. Then we wish to maximize

$$
V=x y z
$$

subject to the constraint

$$
g(x, y, z)=2 x z+2 y z+x y=12
$$

Using the method of Lagrange multipliers, we look for values of x, y, z, and λ such that $\nabla V=\lambda \nabla g$ and $g(x, y, z)=12$. This gives the equations

$$
\begin{gathered}
V_{x}=\lambda g_{x} \\
V_{y}=\lambda g_{y} \\
V_{z}=\lambda g_{z} \\
2 x z+2 y z+x y=12
\end{gathered}
$$

which become

$$
\begin{gather*}
y z=\lambda(2 z+y) \tag{2}\\
x z=\lambda(2 z+x) \\
x y=\lambda(2 x+2 y) \\
2 x z+2 y z+x y=12
\end{gather*}
$$

There are no general rules for solving systems of equations. Sometimes some ingenuity is required. In the present example you might notice that if we multiply 2 by $x, 3$ by y, and 4 by z, then the left sides of these equations will be identical. Doing this, we have

$$
\begin{array}{ll}
\hline 6 & x y z=\lambda(2 x z+x y) \\
7 & x y z=\lambda(2 y z+x y) \\
8 & x y z=\lambda(2 x z+2 y z) \tag{tabular}
\end{array}
$$

We observe that $\lambda \neq 0$ because $\lambda=0$ would imply $y z=x z=x y=0$ from 2, 3, and 4 and this would contradict 5. Therefore, from 6 and 7 , we have

$$
2 x z+x y=2 y z+x y
$$

In geometric terms, Example 2 asks for the highest and lowest points on the curve C in Figure 2 that lie on the paraboloid $z=x^{2}+2 y^{2}$ and directly above the constraint circle $x^{2}+y^{2}=1$.

FIGURE 2

The geometry behind the use of Lagrange multipliers in Example 2 is shown in Figure 3. The extreme values of $f(x, y)=x^{2}+2 y^{2}$ correspond to the level curves that touch the circle $x^{2}+y^{2}=1$.

FIGURE 3
which gives $x z=y z$. But $z \neq 0$ (since $z=0$ would give $V=0$), so $x=y$. From 7 and 8 we have

$$
2 y z+x y=2 x z+2 y z
$$

which gives $2 x z=x y$ and so $($ since $x \neq 0) y=2 z$. If we now put $x=y=2 z$ in 5, we get

$$
4 z^{2}+4 z^{2}+4 z^{2}=12
$$

Since x, y, and z are all positive, we therefore have $z=1$ and so $x=2$ and $y=2$. This agrees with our answer in Section 14.7.
\checkmark EXAMPLE 2 Find the extreme values of the function $f(x, y)=x^{2}+2 y^{2}$ on the circle $x^{2}+y^{2}=1$.

SOLUTION We are asked for the extreme values of f subject to the constraint $g(x, y)=x^{2}+y^{2}=1$. Using Lagrange multipliers, we solve the equations $\nabla f=\lambda \nabla g$ and $g(x, y)=1$, which can be written as

$$
f_{x}=\lambda g_{x} \quad f_{y}=\lambda g_{y} \quad g(x, y)=1
$$

or as

9
10
11

$$
\begin{gathered}
2 x=2 x \lambda \\
4 y=2 y \lambda \\
x^{2}+y^{2}=1
\end{gathered}
$$

From 9 we have $x=0$ or $\lambda=1$. If $x=0$, then 11 gives $y= \pm 1$. If $\lambda=1$, then $y=0$ from 10, so then 11 gives $x= \pm 1$. Therefore f has possible extreme values at the points $(0,1),(0,-1),(1,0)$, and $(-1,0)$. Evaluating f at these four points, we find that

$$
f(0,1)=2 \quad f(0,-1)=2 \quad f(1,0)=1 \quad f(-1,0)=1
$$

Therefore the maximum value of f on the circle $x^{2}+y^{2}=1$ is $f(0, \pm 1)=2$ and the minimum value is $f(\pm 1,0)=1$. Checking with Figure 2, we see that these values look reasonable.

EXAMPLE 3 Find the extreme values of $f(x, y)=x^{2}+2 y^{2}$ on the disk $x^{2}+y^{2} \leqslant 1$.
SOLUTION According to the procedure in (14.7.9), we compare the values of f at the critical points with values at the points on the boundary. Since $f_{x}=2 x$ and $f_{y}=4 y$, the only critical point is $(0,0)$. We compare the value of f at that point with the extreme values on the boundary from Example 2:

$$
f(0,0)=0 \quad f(\pm 1,0)=1 \quad f(0, \pm 1)=2
$$

Therefore the maximum value of f on the disk $x^{2}+y^{2} \leqslant 1$ is $f(0, \pm 1)=2$ and the minimum value is $f(0,0)=0$.

EXAMPLE 4 Find the points on the sphere $x^{2}+y^{2}+z^{2}=4$ that are closest to and farthest from the point $(3,1,-1)$.

SOLUTION The distance from a point (x, y, z) to the point $(3,1,-1)$ is

$$
d=\sqrt{(x-3)^{2}+(y-1)^{2}+(z+1)^{2}}
$$

but the algebra is simpler if we instead maximize and minimize the square of the distance:

$$
d^{2}=f(x, y, z)=(x-3)^{2}+(y-1)^{2}+(z+1)^{2}
$$

The constraint is that the point (x, y, z) lies on the sphere, that is,

$$
g(x, y, z)=x^{2}+y^{2}+z^{2}=4
$$

According to the method of Lagrange multipliers, we solve $\nabla f=\lambda \nabla g, g=4$. This gives

12	$2(x-3)=2 x \lambda$
13	$2(y-1)=2 y \lambda$
14	$2(z+1)=2 z \lambda$
15	$x^{2}+y^{2}+z^{2}=4$

The simplest way to solve these equations is to solve for x, y, and z in terms of λ from 12, 13, and 14, and then substitute these values into 15 . From 12 we have

$$
x-3=x \lambda \quad \text { or } \quad x(1-\lambda)=3 \quad \text { or } \quad x=\frac{3}{1-\lambda}
$$

Figure 4 shows the sphere and the nearest point P in Example 4. Can you see how to find the coordinates of P without using calculus?

FIGURE 4

FIGURE 5
[Note that $1-\lambda \neq 0$ because $\lambda=1$ is impossible from 12.] Similarly, 13 and 14 give

$$
y=\frac{1}{1-\lambda} \quad z=-\frac{1}{1-\lambda}
$$

Therefore, from 15, we have

$$
\frac{3^{2}}{(1-\lambda)^{2}}+\frac{1^{2}}{(1-\lambda)^{2}}+\frac{(-1)^{2}}{(1-\lambda)^{2}}=4
$$

which gives $(1-\lambda)^{2}=\frac{11}{4}, 1-\lambda= \pm \sqrt{11} / 2$, so

$$
\lambda=1 \pm \frac{\sqrt{11}}{2}
$$

These values of λ then give the corresponding points (x, y, z) :

$$
\left(\frac{6}{\sqrt{11}}, \frac{2}{\sqrt{11}},-\frac{2}{\sqrt{11}}\right) \quad \text { and } \quad\left(-\frac{6}{\sqrt{11}},-\frac{2}{\sqrt{11}}, \frac{2}{\sqrt{11}}\right)
$$

It's easy to see that f has a smaller value at the first of these points, so the closest point is $(6 / \sqrt{11}, 2 / \sqrt{11},-2 / \sqrt{11})$ and the farthest is $(-6 / \sqrt{11},-2 / \sqrt{11}, 2 / \sqrt{11})$.

Two Constraints

Suppose now that we want to find the maximum and minimum values of a function $f(x, y, z)$ subject to two constraints (side conditions) of the form $g(x, y, z)=k$ and $h(x, y, z)=c$. Geometrically, this means that we are looking for the extreme values of f when (x, y, z) is restricted to lie on the curve of intersection C of the level surfaces $g(x, y, z)=k$ and $h(x, y, z)=c$. (See Figure 5.) Suppose f has such an extreme value at a point $P\left(x_{0}, y_{0}, z_{0}\right)$.
is a rational function of three variables and so is continuous at every point in \mathbb{R}^{3} except where $x^{2}+y^{2}+z^{2}=1$. In other words, it is discontinuous on the sphere with center the origin and radius 1 .

If we use the vector notation introduced at the end of Section 14.1, then we can write the definitions of a limit for functions of two or three variables in a single compact form as follows.

5 If f is defined on a subset D of \mathbb{R}^{n}, then $\lim _{\mathbf{x} \rightarrow \mathrm{a}} f(\mathbf{x})=L$ means that for every number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that

$$
\text { if } \quad \mathbf{x} \in D \quad \text { and } \quad 0<|\mathbf{x}-\mathbf{a}|<\delta \quad \text { then } \quad|f(\mathbf{x})-L|<\varepsilon
$$

Notice that if $n=1$, then $\mathbf{x}=x$ and $\mathbf{a}=a$, and 5 is just the definition of a limit for functions of a single variable. For the case $n=2$, we have $\mathbf{x}=\langle x, y\rangle, \mathbf{a}=\langle a, b\rangle$, and $|\mathbf{x}-\mathbf{a}|=\sqrt{(x-a)^{2}+(y-b)^{2}}$, so 5 becomes Definition 1. If $n=3$, then $\mathbf{x}=\langle x, y, z\rangle, \mathbf{a}=\langle a, b, c\rangle$, and 5 becomes the definition of a limit of a function of three variables. In each case the definition of continuity can be written as

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=f(\mathbf{a})
$$

14.2
 Exercises

1. Suppose that $\lim _{(x, y) \rightarrow(3,1)} f(x, y)=6$. What can you say about the value of $f(3,1)$? What if f is continuous?

11 11. $\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2} \sin ^{2} x}{x^{4}+y^{4}}$
12. $\lim _{(x, y) \rightarrow(1,0)} \frac{x y-y}{(x-1)^{2}+y^{2}}$
2. Explain why each function is continuous or discontinuous.
(a) The outdoor temperature as a function of longitude, latitude, and time
(b) Elevation (height above sea level) as a function of longitude, latitude, and time
(c) The cost of a taxi ride as a function of distance traveled and time
13. $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}$
14. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{4}}{x^{2}+y^{2}} \quad 14$

$$
15 \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y e^{y}}{x^{4}+4 y^{2}}
$$

16. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin ^{2} y}{x^{2}+2 y^{2}}$
17. $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{2}+y^{8}}$
18. $\lim _{(x, y, z) \rightarrow(\pi, 0,1 / 3)} e^{y^{2}} \tan (x z)$
19. $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y+y z}{x^{2}+y^{2}+z^{2}}$
20. $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y+y z^{2}+x z^{2}}{x^{2}+y^{2}+z^{4}}$
21. $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{y z}{x^{2}+4 y^{2}+9 z^{2}}$

5-22 Find the limit, if it exists, or show that the limit does not exist.

7. $\lim _{(x, y) \rightarrow(2,1)} \frac{4-x y}{x^{2}+3 y^{2}}$
9. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-4 y^{2}}{x^{2}+2 y^{2}}$
6. $\lim _{(x, y) \rightarrow(1,-1)} e^{-x y} \cos (x+y)$
8. $\lim _{(x, y) \rightarrow(1,0)} \ln \left(\frac{1+y^{2}}{x^{2}+x y}\right)$
10. $\lim _{(x, y) \rightarrow(0,0)} \frac{5 y^{4} \cos ^{2} x}{x^{4}+y^{4}}$

F 23-24 Use a computer graph of the function to explain why the limit does not exist.
23. $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2}+3 x y+4 y^{2}}{3 x^{2}+5 y^{2}}$
24. $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{2}+y^{6}}$
4. We make a table of values of
$f(x, y)=\frac{2 x y}{x^{2}+2 y^{2}}$ for a set of (x, y) points near the origin.

x	-0.3	-0.2	-0.1	0	0.1	0.2	0.3
-0.3	0.667	0.706	0.545	0.000	-0.545	-0.706	-0.667
-0.2	0.545	0.667	0.667	0.000	-0.667	-0.667	-0.545
-0.1	0.316	0.444	0.667	0.000	-0.667	-0.444	-0.316
0	0.000	0.000	0.000		0.000	0.000	0.000
0.1	-0.316	-0.444	-0.667	0.000	0.667	0.444	0.316
0.2	-0.545	-0.667	-0.667	0.000	0.667	0.667	0.545
0.3	-0.667	-0.706	-0.545	0.000	0.545	0.706	0.667

It appears from the table that the values of $f(x, y)$ are not approaching a single value as (x, y) approaches the origin. For verification, if we first approach $(0,0)$ along the x-axis, we have $f(x, 0)=0$, so $f(x, y) \rightarrow 0$. But if we approach $(0,0)$ along the line $y=x, f(x, x)=\frac{2 x^{2}}{x^{2}+2 x^{2}}=\frac{2}{3}(x \neq 0)$, so $f(x, y) \rightarrow \frac{2}{3}$. Since f approaches different values along different paths to the origin, this limit does not exist.
5. $f(x, y)=5 x^{3}-x^{2} y^{2}$ is a polynomial, and hence continuous, so $\lim _{(x, y) \rightarrow(1,2)} f(x, y)=f(1,2)=5(1)^{3}-(1)^{2}(2)^{2}=1$.
6. $-x y$ is a polynomial and therefore continuous. Since e^{t} is a continuous function, the composition $e^{-x y}$ is also continuous.

Similarly, $x+y$ is a polynomial and $\cos t$ is a continuous function, so the composition $\cos (x+y)$ is continuous.
The product of continuous functions is continuous, so $f(x, y)=e^{-x y} \cos (x+y)$ is a continuous function and $\lim _{(x, y) \rightarrow(1,-1)} f(x, y)=f(1,-1)=e^{-(1)(-1)} \cos (1+(-1))=e^{1} \cos 0=e$.
7. $f(x, y)=\frac{4-x y}{x^{2}+3 y^{2}}$ is a rational function and hence continuous on its domain.
$(2,1)$ is in the domain of f, so f is continuous there and $\lim _{(x, y) \rightarrow(2,1)} f(x, y)=f(2,1)=\frac{4-(2)(1)}{(2)^{2}+3(1)^{2}}=\frac{2}{7}$.
8. $\frac{1+y^{2}}{x^{2}+x y}$ is a rational function and hence continuous on its domain, which includes $(1,0) . \ln t$ is a continuous function for $t>0$, so the composition $f(x, y)=\ln \left(\frac{1+y^{2}}{x^{2}+x y}\right)$ is continuous wherever $\frac{1+y^{2}}{x^{2}+x y}>0$. In particular, f is continuous at $(1,0)$ and so $\lim _{(x, y) \rightarrow(1,0)} f(x, y)=f(1,0)=\ln \left(\frac{1+0^{2}}{1^{2}+1 \cdot 0}\right)=\ln \frac{1}{1}=0$.
9. $f(x, y)=\left(x^{4}-4 y^{2}\right) /\left(x^{2}+2 y^{2}\right)$. First approach $(0,0)$ along the x-axis. Then $f(x, 0)=x^{4} / x^{2}=x^{2}$ for $x \neq 0$, so $f(x, y) \rightarrow 0$. Now approach $(0,0)$ along the y-axis. For $y \neq 0, f(0, y)=-4 y^{2} / 2 y^{2}=-2$, so $f(x, y) \rightarrow-2$. Since f has two different limits along two different lines, the limit does not exist.
10. $f(x, y)=\left(5 y^{4} \cos ^{2} x\right) /\left(x^{4}+y^{4}\right)$. First approach $(0,0)$ along the x-axis. Then $f(x, 0)=0 / x^{4}=0$ for $x \neq 0$, so $f(x, y) \rightarrow 0$. Next approach $(0,0)$ along the y-axis. For $y \neq 0, f(0, y)=5 y^{4} / y^{4}=5$, so $f(x, y) \rightarrow 5$. Since f has two different limits along two different lines, the limit does not exist.
11. $f(x, y)=\left(y^{2} \sin ^{2} x\right) /\left(x^{4}+y^{4}\right)$. On the x-axis, $f(x, 0)=0$ for $x \neq 0$, so $f(x, y) \rightarrow 0$ as $(x, y) \rightarrow(0,0)$ along the x-axis. Approaching $(0,0)$ along the line $y=x, f(x, x)=\frac{x^{2} \sin ^{2} x}{x^{4}+x^{4}}=\frac{\sin ^{2} x}{2 x^{2}}=\frac{1}{2}\left(\frac{\sin x}{x}\right)^{2}$ for $x \neq 0$ and $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, so $f(x, y) \rightarrow \frac{1}{2}$. Since f has two different limits along two different lines, the limit does not exist.
12. $f(x, y)=\frac{x y-y}{(x-1)^{2}+y^{2}}$. On the x-axis, $f(x, 0)=0 /(x-1)^{2}=0$ for $x \neq 1$, so $f(x, y) \rightarrow 0$ as $(x, y) \rightarrow(1,0)$ along the x-axis. Approaching $(1,0)$ along the line $y=x-1, f(x, x-1)=\frac{x(x-1)-(x-1)}{(x-1)^{2}+(x-1)^{2}}=\frac{(x-1)^{2}}{2(x-1)^{2}}=\frac{1}{2}$ for $x \neq 1$, so $f(x, y) \rightarrow \frac{1}{2}$ along this line. Thus the limit does not exist.
13. $f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}$. We can see that the limit along any line through $(0,0)$ is 0 , as well as along other paths through $(0,0)$ such as $x=y^{2}$ and $y=x^{2}$. So we suspect that the limit exists and equals 0 ; we use the Squeeze Theorem to prove our assertion. $0 \leq\left|\frac{x y}{\sqrt{x^{2}+y^{2}}}\right| \leq|x|$ since $|y| \leq \sqrt{x^{2}+y^{2}}$, and $|x| \rightarrow 0$ as $(x, y) \rightarrow(0,0)$. So $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$.
14. $f(x, y)=\frac{x^{4}-y^{4}}{x^{2}+y^{2}}=\frac{\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}=x^{2}-y^{2}$ for $(x, y) \neq(0,0)$. Thus the limit as $(x, y) \rightarrow(0,0)$ is 0 .
15. Let $f(x, y)=\frac{x^{2} y e^{y}}{x^{4}+4 y^{2}}$. Then $f(x, 0)=0$ for $x \neq 0$, so $f(x, y) \rightarrow 0$ as $(x, y) \rightarrow(0,0)$ along the x-axis. Approaching $(0,0)$ along the y-axis or the line $y=x$ also gives a limit of 0 . But $f\left(x, x^{2}\right)=\frac{x^{2} x^{2} e^{x^{2}}}{x^{4}+4\left(x^{2}\right)^{2}}=\frac{x^{4} e^{x^{2}}}{5 x^{4}}=\frac{e^{x^{2}}}{5}$ for $x \neq 0$, so $f(x, y) \rightarrow e^{0} / 5=\frac{1}{5}$ as $(x, y) \rightarrow(0,0)$ along the parabola $y=x^{2}$. Thus the limit doesn't exist.
16. We can use the Squeeze Theorem to show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin ^{2} y}{x^{2}+2 y^{2}}=0$:
$0 \leq \frac{x^{2} \sin ^{2} y}{x^{2}+2 y^{2}} \leq \sin ^{2} y$ since $\frac{x^{2}}{x^{2}+2 y^{2}} \leq 1$, and $\sin ^{2} y \rightarrow 0$ as $(x, y) \rightarrow(0,0)$, so $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin ^{2} y}{x^{2}+2 y^{2}}=0$.
17. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}+1}-1}=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}+1}-1} \cdot \frac{\sqrt{x^{2}+y^{2}+1}+1}{\sqrt{x^{2}+y^{2}+1}+1}$

$$
=\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{2}+y^{2}\right)\left(\sqrt{x^{2}+y^{2}+1}+1\right)}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)}\left(\sqrt{x^{2}+y^{2}+1}+1\right)=2
$$

1. Line Integrals Of Vector Fields - Practice Problems Solutions

1. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y)=y^{2} \vec{i}+(3 x-6 y) \vec{j}$ and C is the line segment from $(3,7)$ to $(0,12)$.

Here is a quick sketch of C with the direction specified in the problem statement shown.

Next, we need to parameterize the curve.

$$
\vec{r}(t)=(1-t)\langle 3,7\rangle+t\langle 0,12\rangle=\langle 3-3 t, 7+5 t\rangle \quad 0 \leq t \leq 1
$$

In order to evaluate this line integral we'll need the dot product of the vector field (evaluated at the along the curve) and the derivative of the parameterization.

Here is the vector field evaluated along the curve (i.e. plug in x and y from the parameterization into the vector field).

$$
\vec{F}(\vec{r}(t))=(7+5 t)^{2} \vec{i}+(3(3-3 t)-6(7+5 t)) \vec{j}=(7+5 t)^{2} \vec{i}+(-33-39 t) \vec{j}
$$

The derivative of the parameterization is,

$$
\vec{r}^{\prime}(t)=\langle-3,5\rangle
$$

Finally, the dot product of the vector field and the derivative of the parameterization.

$$
\vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)=-3(7+5 t)^{2}-5(33+39 t)
$$

Now all we need to do is evaluate the integral.

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\int_{0}^{1}-3(7+5 t)^{2}-5(33+39 t) d t \\
& =\left.\left[-\frac{1}{5}(7+5 t)^{3}-165 t-\frac{195}{2} t^{2}\right]\right|_{0} ^{1}=-\frac{1079}{2}
\end{aligned}
$$

2 : Line Integrals Of Vector Fields - Practice Problems Solutions

2. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y)=(x+y) \vec{i}+(1-x) \vec{j}$ and C is the portion of $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ that is in the $4^{\text {th }}$ quadrant with the counter clockwise rotation.

Here is a quick sketch of C with the direction specified in the problem statement shown.

Next, we need to parameterize the curve.

$$
r(t)=\langle 2 \cos (t), 3 \sin (t)\rangle \quad \overline{2} \pi \leq t \leq 2 \pi
$$

In order to evaluate this line integral we'll need the dot product of the vector field (evaluated at the along the curve) and the derivative of the parameterization.

Here is the vector field evaluated along the curve (i.e. plug in x and y from the parameterization into the vector field).

$$
\vec{F}(\vec{r}(t))=(2 \cos (t)+3 \sin (t)) \vec{i}+(1-2 \cos (t)) \vec{j}
$$

The derivative of the parameterization is,

$$
\vec{r}^{\prime}(t)=\langle-2 \sin (t), 3 \cos (t)\rangle
$$

Finally, the dot product of the vector field and the derivative of the parameterization.

$$
\begin{aligned}
\vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) & =(2 \cos (t)+3 \sin (t))(-2 \sin (t))+(1-2 \cos (t))(3 \cos (t)) \\
& =-4 \cos (t) \sin (t)-6 \sin ^{2}(t)+3 \cos (t)-6 \cos ^{2}(t) \\
& =-4 \cos (t) \sin (t)-6\left[\sin ^{2}(t)+\cos ^{2}(t)\right]+3 \cos (t) \\
& =-2 \sin (2 t)+3 \cos (t)-6
\end{aligned}
$$

Make sure that you simplify the dot product with an eye towards doing the integral! In this case that meant using the double angle formula for sine to "simplify" the first term for the integral.

Now all we need to do is evaluate the integral.

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\int_{\frac{3}{2} \pi}^{2 \pi}-2 \sin (2 t)+3 \cos (t)-6 d t \\
& =\left.[\cos (2 t)+3 \sin (t)-6 t]\right|_{\frac{3}{2} \pi} ^{2 \pi}=5-3 \pi
\end{aligned}
$$

3 Line Integrals Of Vector Fields - Practice Problems Solutions

3. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y)=y^{2} \vec{i}+\left(x^{2}-4\right) \vec{j}$ and C is the portion of $y=(x-1)^{2}$ from $x=0$ to $x=3$.

Here is a quick sketch of C with the direction specified in the problem statement shown.

Next, we need to parameterize the curve.

$$
\vec{r}(t)=\left\langle t,(t-1)^{2}\right\rangle \quad 0 \leq t \leq 3
$$

In order to evaluate this line integral we'll need the dot product of the vector field (evaluated at the along the curve) and the derivative of the parameterization.

Here is the vector field evaluated along the curve (i.e. plug in x and y from the parameterization into the vector field).

$$
\vec{F}(\vec{r}(t))=\left[(t-1)^{2}\right]^{2} \vec{i}+\left((t)^{2}-4\right) \vec{j}=(t-1)^{4} \vec{i}+\left(t^{2}-4\right) \vec{j}
$$

The derivative of the parameterization is,

$$
\vec{r}^{\prime}(t)=\langle 1,2(t-1)\rangle
$$

Finally, the dot product of the vector field and the derivative of the parameterization.

$$
\begin{aligned}
\vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) & =(t-1)^{4}(1)+\left(t^{2}-4\right)(2 t-2) \\
& =(t-1)^{4}+2 t^{3}-2 t^{2}-8 t+8
\end{aligned}
$$

Make sure that you simplify the dot product with an eye towards doing the integral!

Now all we need to do is evaluate the integral.

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\int_{0}^{3}(t-1)^{4}+2 t^{3}-2 t^{2}-8 t+8 d t \\
& =\left.\left[\frac{1}{5}(t-1)^{5}+\frac{1}{2} t^{4}-\frac{2}{3} t^{3}-4 t^{2}+8 t\right]\right|_{0} ^{3}=\frac{171}{10}
\end{aligned}
$$

Line Integrals - Part I - Practice Problems Solutions

1. Evaluate $\int_{C} 3 x^{2}-2 y d s$ where C is the line segment from $(3,6)$ to $(1,-1)$.

Here is a quick sketch of C with the direction specified in the problem statement shown.

Now, with the specified direction we can see that x is decreasing as we move along the curve in the specified direction. This means that we can't just determine the equation of the line and use that to work the problem. Using the equation of the line would require us to use increasing x since the limits in the integral must go from smaller to larger value.

We could of course use the fact from the notes that relates the line integral with a specified direction and the line integral with the opposite direction to allow us to use the equation of the line. However, for this problem let's just work with problem without the fact to make sure we can do that type of problem

So, we'll need to parameterize this line and we know how to parameterize the equation of a line between two points. Here is the vector form of the parameterization of the line.

$$
\vec{r}(t)=(1-t)\langle 3,6\rangle+t\langle 1,-1\rangle=\langle 3-2 t, 6-7 t\rangle \quad 0 \leq t \leq 1
$$

We could also break this up into parameter form as follows.

$$
\begin{aligned}
& x=3-2 t \\
& y=6-7 t
\end{aligned} \quad 0 \leq t \leq 1
$$

Either form of the parameterization will work for the problem but we'll use the vector form for the rest of this problem.

We'll need the magnitude of the derivative of the parameterization so let's get that.

$$
\vec{r}^{\prime}(t)=\langle-2,-7\rangle \quad\left\|\vec{r}^{\prime}(t)\right\|=\sqrt{(-2)^{2}+(-7)^{2}}=\sqrt{53}
$$

We'll also need the integrand "evaluated" at the parameterization. Recall all this means is we replace the x / y in the integrand with the x / y from parameterization. Here is the integrand evaluated at the parameterization.

$$
3 x^{2}-2 y=3(3-2 t)^{2}-2(6-7 t)=3(3-2 t)^{2}-12+14 t
$$

The line integral is then,

$$
\begin{aligned}
\int_{C} 3 x^{2}-2 y d s & =\int_{0}^{1}\left(3(3-2 t)^{2}-12+14 t\right) \sqrt{53} d t \\
& =\left.\sqrt{53}\left[-\frac{1}{2}(3-2 t)^{3}-12 t+7 t^{2}\right]\right|_{0} ^{1}=8 \sqrt{53}
\end{aligned}
$$

Note that we didn't multiply out the first term in the integrand as we could do a quick substitution to do the integral.

Section 5-2 : Line Integrals - Part I - Practice Problems Solutions

3. Evaluate $\int_{C} 6 x d s$ where C is the portion of $y=x^{2}$ from $x=-1$ to $x=2$. The direction of C is in the direction of increasing x.

Here is a quick sketch of C with the direction specified in the problem statement shown.

In this case we can just use the equation of the curve for the parameterization because the specified direction is going in the direction of increasing x which will give us integral limits from smaller value to larger value as needed. Here is a parameterization for this curve.

$$
\vec{r}(t)=\left\langle t, t^{2}\right\rangle \quad-1 \leq t \leq 2
$$

We could also break this up into parameter form as follows.

$$
\begin{aligned}
& x=t \\
& y=t^{2}
\end{aligned} \quad-1 \leq t \leq 2
$$

Either form of the parameterization will work for the problem but we'll use the vector form for the rest of this problem.

We'll need the magnitude of the derivative of the parameterization so let's get that.

$$
\vec{r}^{\prime}(t)=\langle 1,2 t\rangle \quad\left\|\vec{r}^{\prime}(t)\right\|=\sqrt{(1)^{2}+(2 t)^{2}}=\sqrt{1+4 t^{2}}
$$

We'll also need the integrand "evaluated" at the parameterization. Recall all this means is we replace the x / y in the integrand with the x / y from parameterization. Here is the integrand evaluated at the parameterization.

$$
6 x=6 t
$$

The line integral is then,

$$
\int_{C} 6 x d s=\int_{-1}^{2} 6 t \sqrt{1+4 t^{2}} d t=\left.\frac{1}{2}\left(1+4 t^{2}\right)^{\frac{3}{2}}\right|_{-1} ^{2}=\frac{1}{2}\left(17^{\frac{3}{2}}-5^{\frac{3}{2}}\right)
$$

Line Integrals - Part I - Practice Problems Solutions

6. Evaluate $\int_{C} 16 y^{5} d s$ where C is the portion of $x=y^{4}$ from $y=0$ to $y=1$ followed by the line segment form $(1,1)$ to $(1,-2)$ which in turn is followed by the line segment from $(1,-2)$ to $(2,0)$. See the sketch below for the direction.

[^1]

Now let's parameterize each of these curves.
$C_{1}: \vec{r}(t)=\left\langle t^{4}, t\right\rangle \quad 0 \leq t \leq 1$
$C_{2}: \vec{r}(t)=(1-t)\langle 1,1\rangle+t\langle 1,-2\rangle=\langle 1,1-3 t\rangle \quad 0 \leq t \leq 1$
$C_{3}: \vec{r}(t)=(1-t)\langle 1,-2\rangle+t\langle 2,0\rangle=\langle 1+t, 2 t-2\rangle \quad 0 \leq t \leq 1$
For C_{2} we had to use the vector form for the line segment between two points instead of the equation for the line (which is much simpler of course) because the direction was in the decreasing y direction and the limits on our integral must be from smaller to larger. We could have used the fact from the notes that tells us how the line integrals for the two directions related to allow us to use the equation of the line if we'd wanted to. We decided to do it this way just for the practice of dealing with the vector form for the line segment and it's not all that difficult to deal with the result and the limits are "nicer".

Note as well that for C_{3} we could have solved for the equation of the line and used that because the direction is in the increasing x direction. However, the vector form for the line segment between two points is just as easy to use so we used that instead.

Okay, we now need to compute the line integral along each of these curves. Unlike the first few problems in this section where we found the magnitude and the integrand prior to the integration step we're just going to just straight into the integral and do all the work there.

Here is the integral along each of the curves.

$$
\begin{gathered}
\int_{C_{1}} 16 y^{5} d s=\int_{0}^{1} 16(t)^{5} \sqrt{\left(4 t^{3}\right)^{2}+(1)^{2}} d t=\int_{0}^{1} 16 t^{5} \sqrt{16 t^{6}+1} d t \\
1 \ldots \quad \aleph_{\frac{3}{N}} 1^{1} \quad 1 /-^{3}
\end{gathered}
$$

$$
\begin{aligned}
& =\left.\overline{9}\left(16 t^{0}+1\right)^{2}\right|_{0}=\underline{\overline{9}}\left(17^{\overline{2}}-1\right)=7.6770 \\
\int_{C_{2}} 16 y^{5} d s & =\int_{0}^{1} 16(1-3 t)^{5} \sqrt{(0)^{2}+(-3)^{2}} d t=\int_{0}^{1} 48(1-3 t)^{5} d t \\
& =-\left.\frac{8}{3}(1-3 t)^{6}\right|_{0} ^{1}=-\underline{168} \\
\int_{C_{3}} 16 y^{5} d s & =\int_{0}^{1} 16(2 t-2)^{5} \sqrt{(1)^{2}+()^{2}} d t=\int_{0}^{1} 16 \sqrt{5}(2 t-2)^{5} d t \\
& =\left.\frac{4 \sqrt{5}}{3}(2 t-2)^{6}\right|_{0} ^{1}=\frac{-\frac{256 \sqrt{5}}{3}}{3}=-190.8111
\end{aligned}
$$

Okay to finish this problem out all we need to do is add up the line integrals over these curves to get the full line integral.

$$
\int_{C} 16 y^{5} d s=\left(\frac{1}{9}\left(17^{\frac{3}{2}}+1\right)\right)+(-168)+\left(-\frac{256 \sqrt{5}}{3}\right)=-351.1341
$$

Note that we put parenthesis around the result of each individual line integral simply to illustrate where it came from and they aren't needed in general of course.

Line Integrals - Part II - Practice Problems Solutions

1. Evaluate $\int_{C} \sqrt{1+y} d y$ where C is the portion of $y=\mathbf{e}^{2 x}$ from $x=0$ to $x=2$.

Here is a quick sketch of C with the direction specified in the problem statement shown.

Next, we need to parameterize the curve.

$$
\vec{r}(t)=\left\langle t, \mathrm{e}^{2 t}\right\rangle \quad 0 \leq t \leq 2
$$

Now we need to evaluate the line integral. Be careful with this type line integral. Note that the differential, in this case, is $d y$ and not $d s$ as they were in the previous section.

All we need to do is recall that $d y=y^{\prime} d t$ when we convert the line integral into a "standard" integral.
So, let's evaluate the line integral. Just remember to "plug in" the parameterization into the integrand (i.e. replace the x and y in the integrand with the x and y components of the parameterization) and to convert the differential properly.

Here is the line integral.

$$
\begin{aligned}
\int_{C} \sqrt{1+y} d y & =\int_{0}^{2} \sqrt{1+\mathbf{e}^{2 t}}\left(2 \mathbf{e}^{2 t}\right) d t \\
& =\left.\left[\frac{2}{3}\left(1+\mathbf{e}^{2 t}\right)^{\frac{3}{2}}\right]\right|_{0} ^{2}=\frac{2}{3}\left[\left(1+\mathbf{e}^{4}\right)^{\frac{3}{2}}-2^{\frac{3}{2}}\right]=274.4897
\end{aligned}
$$

Note that, in this case, the integral ended up being a simple substitution.
2. Evaluate $\int_{C} 2 y d x+(1-x) d y$ where C is portion of $y=1-x^{3}$ from $x=-1$ to $x=2$.

Here is a quick sketch of C with the direction specified in the problem statement shown.

Next, we need to parameterize the curve.

$$
\vec{r}(t)=\left\langle t, 1-t^{3}\right\rangle \quad-1 \leq t \leq 2
$$

Now we need to evaluate the line integral. Be careful with this type of line integral. In this case we have both a $d x$ and a $d y$ in the integrand. Recall that this is just a simplified notation for,

$$
\int_{C} 2 y d x+(1-x) d y=\int_{C} 2 y d x+\int_{C} 1-x d y
$$

Then all we need to do is recall that $d x=x^{\prime} d t$ and $d y=y^{\prime} d t$ when we convert the line integral into a "standard" integral.
So, let's evaluate the line integral. Just remember to "plug in" the parameterization into the integrand (i.e. replace the x and y in the integrand with the x and y components of the parameterization) and to convert the differentials properly.

Here is the line integral

$$
\begin{aligned}
\int_{C} 2 y d x+(1-x) d y & =\int_{C} 2 y d x+\int_{C} 1-x d y \\
& =\int_{-1}^{2} 2\left(1-t^{3}\right)(1) d t+\int_{-1}^{2}(1-t)\left(-3 t^{2}\right) d t \\
& =\int_{-1}^{2} 2\left(1-t^{3}\right) d t-3 \int_{-1}^{2} t^{2}-t^{3} d t \\
& =\int_{-1}^{2} t^{3}-3 t^{2}+2 d t \\
& =\left.\left[\frac{1}{4} t^{4}-t^{3}+2 t\right]\right|_{-1} ^{2}=\frac{3}{4}
\end{aligned}
$$

Note that, in this case, we combined the two integrals into a single integral prior to actually evaluating the integral. This doesn't need to be done but can, on occasion, simplify the integrand and hence the evaluation of the integral.

Line Integrals - Part II - Practice Problems Solutions

4. Evaluate $\int_{C} 1+x^{3} d x$ where C is the right half of the circle of radius 2 with counter clockwise rotation followed by the line segment from
$(0,2)$ to $(-3,-4)$. See the sketch below for the direction.

To help with the problem let's label each of the curves as follows,

Now let's parameterize each of these curves.
$C_{1}: \vec{r}(t)=\langle 2 \cos (t), 2 \sin (t)\rangle \quad-\frac{1}{-} \pi \leq t \leq \frac{1}{-} \pi$
$C_{2}: \vec{r}(t)=(1-t)\langle 0,2\rangle+t\langle-3,-4\rangle=\langle-3 t, 2-6 t\rangle \quad 0 \leq t \leq 1$

Now we need to compute the line integral for each of the curves.

$$
\begin{aligned}
\int_{C_{1}} 1+x^{3} d x & =\int_{-\frac{1}{2} \pi}^{\frac{1}{2} \pi}\left[1+(2 \cos (t))^{3}\right](-2 \sin (t)) d t \\
& =\int_{-\frac{1}{2} \pi}^{\frac{1}{2} \pi}-2 \sin (t)-16 \cos ^{3}(t) \sin (t) d t \\
& =\left.\left(2 \cos (t)+4 \cos ^{4}(t)\right)\right|_{-\frac{1}{2} \pi} ^{\frac{1}{2} \pi}=\underline{0} \\
\int_{C_{2}} 1+x^{3} d x & =\int_{0}^{1}\left[1+(-3 t)^{3}\right](-3) d t \\
& =\int_{0}^{1}-3+81 t^{3} d t \\
& =\left.\left(-3 t+\frac{81}{4} t^{4}\right)\right|_{0} ^{1}=\underline{\frac{69}{4}}
\end{aligned}
$$

Don't forget to correctly deal with the differentials when converting the line integral into a "standard" integral.

Okay to finish this problem out all we need to do is add up the line integrals over these curves to get the full line integral.

$$
\int_{C} 1+x^{3} d x=(0)+\left(\frac{69}{4}\right)=\frac{69}{4}
$$

Note that we put parenthesis around the result of each individual line integral simply to illustrate where it came from and they aren't needed in general of course.

Line Integrals - Part II - Practice Problems Solutions

5. Evaluate $\int_{C} 2 x^{2} d y-x y d x$ where C is the line segment from $(1,-5)$ to $(-2,-3)$ followed by the portion of $y=1-x^{2}$ from $x=-2$ to $x=2$ which in turn is followed by the line segment from $(2,-3)$ to $(4,-3)$. See the sketch below for the direction.

[^2]

Now let's parameterize each of these curves.
$C_{1}: \vec{r}(t)=(1-t)\langle 1,-5\rangle+t\langle-2,-3\rangle=\langle 1-3 t,-5+2 t\rangle \quad 0 \leq t \leq 1$
$C_{2}: \vec{r}(t)=\left\langle t, 1-t^{2}\right\rangle \quad-2 \leq t \leq 2$
$C_{3}: \vec{r}(t)=\langle t,-3\rangle \quad 2 \leq t \leq 4$
Note that for C_{1} we had to use the vector form for the line segment between two points because the specified direction was in the decreasing x direction and so the equation of the line wouldn't work since the limits of the line integral need to go from smaller to larger values.
We did just use the equation of the line for C_{3} since it was simple enough to do and the limits were also nice enough.

Now we need to compute the line integral for each of the curves.

$$
\int 2 x^{2} d y-x y d x=\int 2 x^{2} d y-\int x y d x
$$

$$
\begin{aligned}
& \stackrel{J}{C}_{1}^{\prime} \\
&= \int_{0}^{J_{1}} 2(1-3 t)^{2}(2) d t-\int_{0}^{1}(1-3 t)(-5+2 t)(-3) d t \\
&= \int_{0}^{1} 4(1-3 t)^{2}-3\left(6 t^{2}-17 t+5\right) d t \\
&=\left(-\frac{4}{9}\right.\left.(1-3 t)^{3}-3\left(2 t^{3}-\frac{17}{2} t^{2}+5 t\right)\right)\left.\right|_{0} ^{1}=\frac{17}{2} \\
& \int_{C_{2}}^{\int_{2}} 2 x^{2} d y-x y d x=\int_{C_{2}}^{2} 2 x^{2} d y-\int_{C_{2}}^{2} x y d x \\
&=\int_{-2}^{2} 2(t)^{2}(-2 t) d t-\int_{-2}^{2}(t)\left(1-t^{2}\right)(1) d t \\
&=\left.\left(-\frac{3}{4} t^{4}-\frac{1}{2} t^{2}\right)\right|_{-2} ^{2}=\underline{0} \\
& \int_{C_{3}}^{2} 2 x^{2} d y-x y d x=\int_{C_{3}}^{2} 2 x^{2} d y-\int_{C_{2}}^{2} x y d x \\
&=\int_{2}^{4} 2(t)^{2}(0) d t-\int_{2}^{4}(t)(-3)(1) d t \\
&=\int_{2}^{4} 3 t d t \\
&=\left.\left(\frac{3}{2} t^{2}\right)\right|_{2} ^{4}=\underline{18}
\end{aligned}
$$

Don't forget to correctly deal with the differentials when converting the line integral into a "standard" integral.
Also, don't get excited when one of the differentials "evaluates" to zero as the first one did in the C_{3} integral. That will happen on occasion and is not something to get worried about when it does.

Okay to finish this problem out all we need to do is add up the line integrals over these curves to get the full line integral.

$$
\int_{C} 2 x^{2} d y-x y d x=\left(\frac{17}{2}\right)+(0)+(18)=\frac{53}{2}
$$

Note that we put parenthesis around the result of each individual line integral simply to illustrate where it came from and they aren't needed in general of course.

Line Integrals - Part II - Practice Problems Solutions

6. Evaluate $\int_{C}(x-y) d x-y x^{2} d y$ for each of the following curves.
(a) C is the portion of the circle of radius 6 in the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ quadrant with clockwise rotation.
(b) C is the line segment from $(0,-6)$ to $(6,0)$.
(a) C is the portion of the circle of radius 6 in the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ quadrant with clockwise rotation.

Let's start off with a quick sketch of the curve for this part of the problem.

Here is the parameterization for this curve.

$$
C: \vec{r}(t)=\langle 6 \cos (t),-6 \sin (t)\rangle \quad \frac{1}{-} \pi<t<2 \pi
$$

Here is the line integral for this curve.

$$
\begin{aligned}
\int_{C}(x-y) d x-y x^{2} d y & =\int_{C}(x-y) d x-\int_{C} y x^{2} d y \\
& =\int_{\frac{1}{2} \pi}^{2 \pi}[6 \cos (t)-(-6 \sin (t))](-6 \sin (t)) d t \\
& =\int_{\frac{1}{2} \pi}^{2 \pi}-36 \cos (t) \sin (t)-36 \sin ^{2}(t)-1296 \sin (t) \cos ^{3}(t) d t \\
& \left.\left.=\int_{\frac{1}{2} \pi}^{2 \pi}-18 \sin (2 t)-18(1-\cos (2 t))-1296 \sin (t)\right)(6 \cos (t))^{2}\right](-6 \cos (t)) d t \\
& =\left.\left(9 \cos (2 t)-18 t+9 \sin (2 t)+324 \cos ^{4}(t)\right)\right|_{\frac{1}{2} \pi} ^{2 \pi} \\
& =342-27 \pi=257.1770
\end{aligned}
$$

Don't forget to correctly deal with the differentials when converting the line integral into a "standard" integral.
(b) C is the line segment from $(0,-6)$ to $(6,0)$.

Let's start off with a quick sketch of the curve for this part of the problem.

So, what we have in this part is a different curve that goes from $(0,-6)$ to $(6,0)$. Despite the fact that this curve has the same starting and ending point as the curve in the first part there is no reason to expect the line integral to have the same value. Therefore we'll need to go through the work and see what we get from the line integral.
We'll need to parameterize the curve so let's take care of that.

$$
C: \vec{r}(t)=(1-t)\langle 0,-6\rangle+t\langle 6,0\rangle=\langle 6 t,-6+6 t\rangle \quad 0 \leq t \leq 1
$$

Note that we could have just found the equation of this curve but it seemed just as easy to just use the vector form of the line segment between two points.

Now all we need to do is compute the line integral.

$$
\begin{aligned}
\int_{C}(x-y) d x-y x^{2} d y & =\int_{C}(x-y) d x-\int_{C} y x^{2} d y \\
& =\int_{0}^{1}[6 t-(-6+6 t)](6) d t-\int_{0}^{1}\left[(-6+6 t)(6 t)^{2}\right](6) d t \\
& =\int_{0}^{1} 36+1296 t^{2}-1296 t^{3} d t \\
& =\left.\left(36 t+432 t^{3}-324 t^{4}\right)\right|_{0} ^{1}=144
\end{aligned}
$$

So, as noted at the start of this part the value of the line integral was not the same as the value of the line integral in the first part despite the same starting and ending points for the curve. Note that it is possible for two line integrals with the same starting and ending points to have the same value but we can't expect that to happen and so need to go through and do the work.

Figure 11 shows how E is swept out if we integrate first with respect to ρ, then ϕ, and then θ. The volume of E is

TEC Visual 15.9 shows an animation of Figure 11.

$$
\begin{aligned}
V(E) & =\iiint_{E} d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{\cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{\pi / 4} \sin \phi\left[\frac{\rho^{3}}{3}\right]_{\rho=0}^{\rho=\cos \phi} d \phi \\
& =\frac{2 \pi}{3} \int_{0}^{\pi / 4} \sin \phi \cos ^{3} \phi d \phi=\frac{2 \pi}{3}\left[-\frac{\cos ^{4} \phi}{4}\right]_{0}^{\pi / 4}=\frac{\pi}{8}
\end{aligned}
$$

ϕ varies from 0 to $\pi / 4$ while θ is constant.

θ varies from 0 to 2π.

15.9 Exercises

1-2 Plot the point whose spherical coordinates are given. Then find the rectangular coordinates of the point.
1.
(2.
(a)
(a) $(6, \pi / 3, \pi / 6)$
(b) $(3, \pi / 2,3 \pi / 4)$
$(2, \pi / 2, \pi / 2)$
(b) $(4,-\pi / 4, \pi / 3)$

3-4 Change from rectangular to spherical coordinates.
(3.) (a) $(0,-2,0)$
(b) $(-1,1,-\sqrt{2})$
4.) (a) $(1,0, \sqrt{3})$
(b) $(\sqrt{3},-1,2 \sqrt{3})$

5-6 Describe in words the surface whose equation is given.
5. $\phi=\pi / 3$

7-8 Identify the surface whose equation is given.
7. $\rho=\sin \theta \sin \phi$
8. $\rho^{2}\left(\sin ^{2} \phi \sin ^{2} \theta+\cos ^{2} \phi\right)=9$
(

9-10 Write the equation in spherical coordinates.
9. (a) $z^{2}=x^{2}+y^{2}$
(b) $x^{2}+z^{2}=9$
10. (a) $x^{2}-2 x+y^{2}+z^{2}=0$
(b) $x+2 y+3 z=1$

21-34 Use spherical coordinates.
21. Evaluate $\iiint_{B}\left(x^{2}+y^{2}+z^{2}\right)^{2} d V$, where B is the ball with center the origin and radius 5 .
22. Evaluate $\iiint_{H}\left(9-x^{2}-y^{2}\right) d V$, where H is the solid hemisphere $x^{2}+y^{2}+z^{2} \leqslant 9, z \geqslant 0$.
23. Evaluate $\iiint_{E}\left(x^{2}+y^{2}\right) d V$, where E lies between the spheres $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}+z^{2}=9$.
24. Evaluate $\iiint_{E} y^{2} d V$, where E is the solid hemisphere $x^{2}+y^{2}+z^{2} \leqslant 9, y \geqslant 0$.
25. Evaluate $\iiint_{E} x e^{x^{2}+y^{2}+z^{2}} d V$, where E is the portion of the unit ball $x^{2}+y^{2}+z^{2} \leqslant 1$ that lies in the first octant.
26. Evaluate $\iiint_{E} x y z d V$, where E lies between the spheres $\rho=2$ and $\rho=4$ and above the cone $\phi=\pi / 3$.
27. Find the volume of the part of the ball $\rho \leqslant a$ that lies between the cones $\phi=\pi / 6$ and $\phi=\pi / 3$.
28. Find the average distance from a point in a ball of radius a to its center.
29. (a) Find the volume of the solid that lies above the cone $\phi=\pi / 3$ and below the sphere $\rho=4 \cos \phi$.
(b) Find the centroid of the solid in part (a).
30. Find the volume of the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$-plane, and below the cone $z=\sqrt{x^{2}+y^{2}}$.
31. (a) Find the centroid of the solid in Example 4.
(b) Find the moment of inertia about the z-axis for this solid.

We split the region of integration where the outside boundary changes from the vertical line $x=1$ to the circle $x^{2}+y^{2}=a^{2}$ or $r=1$. R_{1} is a right triangle, so $\cos \theta=\frac{1}{a}$. Thus, the boundary between R_{1} and R_{2} is $\theta=\cos ^{-1}\left(\frac{1}{a}\right)$ in polar coordinates, or $y=\sqrt{a^{2}-1} x$ in rectangular coordinates. Using rectangular coordinates for the region R_{1} and polar coordinates for R_{2}, we find the total volume of the solid to be

$$
V=16\left[\int_{0}^{1} \int_{0}^{\sqrt{a^{2}-1} x} \sqrt{1-x^{2}} d y d x+\int_{\cos ^{-1}(1 / a)}^{\pi / 4} \int_{0}^{a} \sqrt{1-r^{2} \cos ^{2} \theta} r d r d \theta\right]
$$

If $a \geq \sqrt{2}$, the cylinder $x^{2}+y^{2}=1$ completely encloses the intersection of the other two cylinders, so the solid of intersection of the three cylinders coincides with the intersection of $x^{2}+z^{2}=1$ and $y^{2}+z^{2}=1$ as illustrated in Exercise 15.6.24. Its volume is $V=16 \int_{0}^{1} \int_{0}^{x} \sqrt{1-x^{2}} d y d x$

15.9 Triple Integrals in Spherical Coordinates

1. (a)

(b)

2. (a)

(b)

From Equations 1, $x=\rho \sin \phi \cos \theta=6 \sin \frac{\pi}{6} \cos \frac{\pi}{3}=6 \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{3}{2}$, $y=\rho \sin \phi \sin \theta=6 \sin \frac{\pi}{6} \sin \frac{\pi}{3}=6 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2}=\frac{3 \sqrt{3}}{2}$, and $z=\rho \cos \phi=6 \cos \frac{\pi}{6}=6 \cdot \frac{\sqrt{3}}{2}=3 \sqrt{3}$, so the point is $\left(\frac{3}{2}, \frac{3 \sqrt{3}}{2}, 3 \sqrt{3}\right)$ in rectangular coordinates.
$x=3 \sin \frac{3 \pi}{4} \cos \frac{\pi}{2}=3 \cdot \frac{\sqrt{2}}{2} \cdot 0=0$,
$y=3 \sin \frac{3 \pi}{4} \sin \frac{\pi}{2}=3 \cdot \frac{\sqrt{2}}{2} \cdot 1=\frac{3 \sqrt{2}}{2}$, and
$z=3 \cos \frac{3 \pi}{4}=3\left(-\frac{\sqrt{2}}{2}\right)=-\frac{3 \sqrt{2}}{2}$, so the point is $\left(0, \frac{3 \sqrt{2}}{2},-\frac{3 \sqrt{2}}{2}\right)$ in
rectangular coordinates.
$x=2 \sin \frac{\pi}{2} \cos \frac{\pi}{2}=2 \cdot 1 \cdot 0=0, y=2 \sin \frac{\pi}{2} \sin \frac{\pi}{2}=2 \cdot 1 \cdot 1=2$,
$z=2 \cos \frac{\pi}{2}=2 \cdot 0=0$ so the point is $(0,2,0)$ in rectangular coordinates.

$$
\begin{aligned}
& x=4 \sin \frac{\pi}{3} \cos \left(-\frac{\pi}{4}\right)=4 \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}=\sqrt{6}, \\
& y=4 \sin \frac{\pi}{3} \sin \left(-\frac{\pi}{4}\right)=4\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{\sqrt{2}}{2}\right)=-\sqrt{6}, \\
& z=4 \cos \frac{\pi}{3}=4 \cdot \frac{1}{2}=2 \text { so the point is }(\sqrt{6},-\sqrt{6}, 2) \text { in rectangular } \\
& \text { coordinates. }
\end{aligned}
$$

3. (a) From Equations 1 and $2, \rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{0^{2}+(-2)^{2}+0^{2}}=2, \cos \phi=\frac{z}{\rho}=\frac{0}{2}=0 \quad \Rightarrow \quad \phi=\frac{\pi}{2}$, and $\cos \theta=\frac{x}{\rho \sin \phi}=\frac{0}{2 \sin (\pi / 2)}=0 \Rightarrow \theta=\frac{3 \pi}{2} \quad[$ since $y<0]$. Thus spherical coordinates are $\left(2, \frac{3 \pi}{2}, \frac{\pi}{2}\right)$.
(b) $\rho=\sqrt{1+1+2}=2, \cos \phi=\frac{z}{\rho}=\frac{-\sqrt{2}}{2} \Rightarrow \phi=\frac{3 \pi}{4}$, and $\cos \theta=\frac{x}{\rho \sin \phi}=\frac{-1}{2 \sin (3 \pi / 4)}=\frac{-1}{2(\sqrt{2} / 2)}=-\frac{1}{\sqrt{2}} \Rightarrow \theta=\frac{3 \pi}{4} \quad[$ since $y>0]$. Thus spherical coordinates are $\left(2, \frac{3 \pi}{4}, \frac{3 \pi}{4}\right)$.
4. (a) $\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{1+0+3}=2, \cos \phi=\frac{z}{\rho}=\frac{\sqrt{3}}{2} \quad \Rightarrow \quad \phi=\frac{\pi}{6}$, and $\cos \theta=\frac{x}{\rho \sin \phi}=\frac{1}{2 \sin (\pi / 6)}=1 \Rightarrow$ $\theta=0$. Thus spherical coordinates are $\left(2,0, \frac{\pi}{6}\right)$.
(b) $\rho=\sqrt{3+1+12}=4, \cos \phi=\frac{z}{\rho}=\frac{2 \sqrt{3}}{4}=\frac{\sqrt{3}}{2} \Rightarrow \phi=\frac{\pi}{6}$, and $\cos \theta=\frac{x}{\rho \sin \phi}=\frac{\sqrt{3}}{4 \sin (\pi / 6)}=\frac{\sqrt{3}}{2} \Rightarrow$ $\theta=\frac{11 \pi}{6} \quad[$ since $y<0]$. Thus spherical coordinates are $\left(4, \frac{11 \pi}{6}, \frac{\pi}{6}\right)$.
5. Since $\phi=\frac{\pi}{3}$, the surface is the top half of the right circular cone with vertex at the origin and axis the positive z-axis.
6. Since $\rho=3, x^{2}+y^{2}+z^{2}=9$ and the surface is a sphere with center the origin and radius 3 .
7. $\rho=\sin \theta \sin \phi \quad \Rightarrow \quad \rho^{2}=\rho \sin \theta \sin \phi \quad \Leftrightarrow \quad x^{2}+y^{2}+z^{2}=y \quad \Leftrightarrow \quad x^{2}+y^{2}-y+\frac{1}{4}+z^{2}=\frac{1}{4} \quad \Leftrightarrow$ $x^{2}+\left(y-\frac{1}{2}\right)^{2}+z^{2}=\frac{1}{4}$. Therefore, the surface is a sphere of radius $\frac{1}{2}$ centered at $\left(0, \frac{1}{2}, 0\right)$.
8. $\rho^{2}\left(\sin ^{2} \phi \sin ^{2} \theta+\cos ^{2} \phi\right)=9 \Leftrightarrow(\rho \sin \phi \sin \theta)^{2}+(\rho \cos \phi)^{2}=9 \Leftrightarrow y^{2}+z^{2}=9$. Thus the surface is a circular cylinder of radius 3 with axis the x-axis.
9. (a) $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta$, and $z=\rho \cos \phi$, so the equation $z^{2}=x^{2}+y^{2}$ becomes
$(\rho \cos \phi)^{2}=(\rho \sin \phi \cos \theta)^{2}+(\rho \sin \phi \sin \theta)^{2}$ or $\rho^{2} \cos ^{2} \phi=\rho^{2} \sin ^{2} \phi$. If $\rho \neq 0$, this becomes $\cos ^{2} \phi=\sin ^{2} \phi .(\rho=0$ corresponds to the origin which is included in the surface.) There are many equivalent equations in spherical coordinates, such as $\tan ^{2} \phi=1,2 \cos ^{2} \phi=1, \cos 2 \phi=0$, or even $\phi=\frac{\pi}{4}, \phi=\frac{3 \pi}{4}$.
(b) $x^{2}+z^{2}=9 \Leftrightarrow(\rho \sin \phi \cos \theta)^{2}+(\rho \cos \phi)^{2}=9 \quad \Leftrightarrow \quad \rho^{2} \sin ^{2} \phi \cos ^{2} \theta+\rho^{2} \cos ^{2} \phi=9$ or $\rho^{2}\left(\sin ^{2} \phi \cos ^{2} \theta+\cos ^{2} \phi\right)=9$.
10. (a) $x^{2}-2 x+y^{2}+z^{2}=0 \Leftrightarrow\left(x^{2}+y^{2}+z^{2}\right)-2 x=0 \quad \Leftrightarrow \quad \rho^{2}-2(\rho \sin \phi \cos \theta)=0$ or $\rho=2 \sin \phi \cos \theta$.
(b) $x+2 y+3 z=1 \Leftrightarrow \rho \sin \phi \cos \theta+2 \rho \sin \phi \sin \theta+3 \rho \cos \phi=1$ or $\rho=1 /(\sin \phi \cos \theta+2 \sin \phi \sin \theta+3 \cos \phi)$.
11. $2 \leq \rho \leq 4$ represents the solid region between and including the spheres of radii 2 and 4 , centered at the origin. $0 \leq \phi \leq \frac{\pi}{3}$ restricts the solid to that portion on or above the cone $\phi=\frac{\pi}{3}$, and $0 \leq \theta \leq \pi$ further restricts the solid to that portion on or to the right of the $x z$-plane.

12. $1 \leq \rho \leq 2$ represents the solid region between and including the spheres of radii 1 and 2 , centered at the origin. $0 \leq \phi \leq \frac{\pi}{2}$ restricts the solid to that portion on or above the $x y$-plane, and $\frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{2}$ further restricts the solid to that portion on or behind the $y z$-plane.

13. $\rho \leq 1$ represents the solid sphere of radius 1 centered at the origin. $\frac{3 \pi}{4} \leq \phi \leq \pi$ restricts the solid to that portion on or below the cone $\phi=\frac{3 \pi}{4}$.

14. $\rho \leq 2$ represents the solid sphere of radius 2 centered at the origin. Notice that $x^{2}+y^{2}=(\rho \sin \phi \cos \theta)^{2}+(\rho \sin \phi \sin \theta)^{2}=\rho^{2} \sin ^{2} \phi$. Then $\rho=\csc \phi \Rightarrow \rho \sin \phi=1 \Rightarrow \rho^{2} \sin ^{2} \phi=x^{2}+y^{2}=1$, so $\rho \leq \csc \phi$ restricts the solid to that portion on or inside the circular cylinder $x^{2}+y^{2}=1$.

15. $z \geq \sqrt{x^{2}+y^{2}}$ because the solid lies above the cone. Squaring both sides of this inequality gives $z^{2} \geq x^{2}+y^{2} \Rightarrow$ $2 z^{2} \geq x^{2}+y^{2}+z^{2}=\rho^{2} \Rightarrow z^{2}=\rho^{2} \cos ^{2} \phi \geq \frac{1}{2} \rho^{2} \quad \Rightarrow \quad \cos ^{2} \phi \geq \frac{1}{2}$. The cone opens upward so that the inequality is $\cos \phi \geq \frac{1}{\sqrt{2}}$, or equivalently $0 \leq \phi \leq \frac{\pi}{4}$. In spherical coordinates the sphere $z=x^{2}+y^{2}+z^{2}$ is $\rho \cos \phi=\rho^{2} \quad \Rightarrow$ $\rho=\cos \phi .0 \leq \rho \leq \cos \phi$ because the solid lies below the sphere. The solid can therefore be described as the region in spherical coordinates satisfying $0 \leq \rho \leq \cos \phi, 0 \leq \phi \leq \frac{\pi}{4}$.
16. (a) The hollow ball is a spherical shell with outer radius 15 cm and inner radius 14.5 cm . If we center the ball at the origin of the coordinate system and use centimeters as the unit of measurement, then spherical coordinates conveniently describe the hollow ball as $14.5 \leq \rho \leq 15,0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi$.
(b) If we position the ball as in part (a), one possibility is to take the half of the ball that is above the $x y$-plane which is described by $14.5 \leq \rho \leq 15,0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi / 2$.
17.

18.

The region of integration is given in spherical coordinates by
$E=\{(\rho, \theta, \phi) \mid 0 \leq \rho \leq 3,0 \leq \theta \leq \pi / 2,0 \leq \phi \leq \pi / 6\}$. This represents the solid region in the first octant bounded above by the sphere $\rho=3$ and below by the cone $\phi=\pi / 6$.

$$
\begin{aligned}
\int_{0}^{\pi / 6} \int_{0}^{\pi / 2} \int_{0}^{3} \rho^{2} \sin \phi d \rho d \theta d \phi & =\int_{0}^{\pi / 6} \sin \phi d \phi \int_{0}^{\pi / 2} d \theta \int_{0}^{3} \rho^{2} d \rho \\
& =[-\cos \phi]_{0}^{\pi / 6}[\theta]_{0}^{\pi / 2}\left[\frac{1}{3} \rho^{3}\right]_{0}^{3} \\
& =\left(1-\frac{\sqrt{3}}{2}\right)\left(\frac{\pi}{2}\right)(9)=\frac{9 \pi}{4}(2-\sqrt{3})
\end{aligned}
$$

The region of integration is given in spherical coordinates by
$E=\{(\rho, \theta, \phi) \mid 1 \leq \rho \leq 2,0 \leq \theta \leq 2 \pi, \pi / 2 \leq \phi \leq \pi\}$. This represents the solid region between the spheres $\rho=1$ and $\rho=2$ and below the $x y$-plane

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{\pi / 2}^{\pi} \int_{1}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta & =\int_{0}^{2 \pi} d \theta \int_{\pi / 2}^{\pi} \sin \phi d \phi \int_{1}^{2} \rho^{2} d \rho \\
& =[\theta]_{0}^{2 \pi}[-\cos \phi]_{\pi / 2}^{\pi}\left[\frac{1}{3} \rho^{3}\right]_{1}^{2} \\
& =2 \pi(1)\left(\frac{7}{3}\right)=\frac{14 \pi}{3}
\end{aligned}
$$

19. The solid E is most conveniently described if we use cylindrical coordinates:
$E=\left\{(r, \theta, z) \left\lvert\, 0 \leq \theta \leq \frac{\pi}{2}\right., 0 \leq r \leq 3,0 \leq z \leq 2\right\}$. Then
$\iiint_{E} f(x, y, z) d V=\int_{0}^{\pi / 2} \int_{0}^{3} \int_{0}^{2} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta$.
20. The solid E is most conveniently described if we use spherical coordinates:
$E=\left\{(\rho, \theta, \phi) \mid 1 \leq \rho \leq 2, \frac{\pi}{2} \leq \theta \leq 2 \pi, 0 \leq \phi \leq \frac{\pi}{2}\right\}$. Then
$\iiint_{E} f(x, y, z) d V=\int_{0}^{\pi / 2} \int_{\pi / 2}^{2 \pi} \int_{1}^{2} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi$.
21. In spherical coordinates, B is represented by $\{(\rho, \theta, \phi) \mid 0 \leq \rho \leq 5,0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi\}$. Thus

$$
\begin{aligned}
\iiint_{B}\left(x^{2}+y^{2}+z^{2}\right)^{2} d V & =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{5}\left(\rho^{2}\right)^{2} \rho^{2} \sin \phi d \rho d \theta d \phi=\int_{0}^{\pi} \sin \phi d \phi \int_{0}^{2 \pi} d \theta \int_{0}^{5} \rho^{6} d \rho \\
& =[-\cos \phi]_{0}^{\pi}[\theta]_{0}^{2 \pi}\left[\frac{1}{7} \rho^{7}\right]_{0}^{5}=(2)(2 \pi)\left(\frac{78,125}{7}\right) \\
& =\frac{312,500}{7} \pi \approx 140,249.7
\end{aligned}
$$

22. In spherical coordinates, H is represented by $\left\{(\rho, \theta, \phi) \mid 0 \leq \rho \leq 3,0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \frac{\pi}{2}\right\}$. Thus

$$
\begin{aligned}
\iiint_{H}\left(9-x^{2}-y^{2}\right) d V & =\int_{0}^{\pi / 2} \int_{0}^{2 \pi} \int_{0}^{3}\left[9-\left(\rho^{2} \sin ^{2} \phi \cos ^{2} \theta+\rho^{2} \sin ^{2} \phi \sin ^{2} \theta\right)\right] \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\int_{0}^{\pi / 2} \int_{0}^{2 \pi} \int_{0}^{3}\left(9-\rho^{2} \sin ^{2} \phi\right) \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\int_{0}^{\pi / 2} \int_{0}^{2 \pi}\left[3 \rho^{3}-\frac{1}{5} \rho^{5} \sin ^{2} \phi\right]_{\rho=0}^{\rho=3} \sin \phi d \rho d \theta d \phi \\
& =\int_{0}^{\pi / 2} \int_{0}^{2 \pi}\left(81 \sin \phi-\frac{243}{5} \sin ^{3} \phi\right) d \theta d \phi \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{\pi / 2}\left[81 \sin \phi-\frac{243}{5}\left(1-\cos ^{2} \phi\right) \sin \phi\right] d \phi \\
& =2 \pi\left[-81 \cos \phi-\frac{243}{5}\left(\frac{1}{3} \cos ^{3} \phi-\cos \phi\right)\right]_{0}^{\pi / 2} \\
& =2 \pi\left[0+81+\frac{243}{5}\left(-\frac{2}{3}\right)\right]=\frac{486}{5} \pi
\end{aligned}
$$

23. In spherical coordinates, E is represented by $\{(\rho, \theta, \phi) \mid 2 \leq \rho \leq 3,0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi\}$ and

$$
x^{2}+y^{2}=\rho^{2} \sin ^{2} \phi \cos ^{2} \theta+\rho^{2} \sin ^{2} \phi \sin ^{2} \theta=\rho^{2} \sin ^{2} \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\rho^{2} \sin ^{2} \phi . \text { Thus }
$$

$$
\iiint_{E}\left(x^{2}+y^{2}\right) d V=\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{2}^{3}\left(\rho^{2} \sin ^{2} \phi\right) \rho^{2} \sin \phi d \rho d \theta d \phi=\int_{0}^{\pi} \sin ^{3} \phi d \phi \int_{0}^{2 \pi} d \theta \int_{2}^{3} \rho^{4} d \rho
$$

$$
=\int_{0}^{\pi}\left(1-\cos ^{2} \phi\right) \sin \phi d \phi[\theta]_{0}^{2 \pi}\left[\frac{1}{5} \rho^{5}\right]_{2}^{3}=\left[-\cos \phi+\frac{1}{3} \cos ^{3} \phi\right]_{0}^{\pi}(2 \pi) \cdot \frac{1}{5}(243-32)
$$

$$
=\left(1-\frac{1}{3}+1-\frac{1}{3}\right)(2 \pi)\left(\frac{211}{5}\right)=\frac{1688 \pi}{15}
$$

24. In spherical coordinates, E is represented by $\{(\rho, \theta, \phi) \mid 0 \leq \rho \leq 3,0 \leq \theta \leq \pi, 0 \leq \phi \leq \pi\}$. Thus

$$
\begin{aligned}
\iiint_{E} y^{2} d V & =\int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{3}(\rho \sin \phi \sin \theta)^{2} \rho^{2} \sin \phi d \rho d \theta d \phi=\int_{0}^{\pi} \sin ^{3} \phi d \phi \int_{0}^{\pi} \sin ^{2} \theta d \theta \int_{0}^{3} \rho^{4} d \rho \\
& =\int_{0}^{\pi}\left(1-\cos ^{2} \phi\right) \sin \phi d \phi \int_{0}^{\pi} \frac{1}{2}(1-\cos 2 \theta) d \theta \int_{0}^{3} \rho^{4} d \rho \\
& =\left[-\cos \phi+\frac{1}{3} \cos ^{3} \phi\right]_{0}^{\pi}\left[\frac{1}{2}\left(\theta-\frac{1}{2} \sin 2 \theta\right)\right]_{0}^{\pi}\left[\frac{1}{5} \rho^{5}\right]_{0}^{3} \\
& =\left(\frac{2}{3}+\frac{2}{3}\right)\left(\frac{1}{2} \pi\right)\left(\frac{1}{5}(243)\right)=\left(\frac{4}{3}\right)\left(\frac{\pi}{2}\right)\left(\frac{243}{5}\right)=\frac{162 \pi}{5}
\end{aligned}
$$

25. In spherical coordinates, E is represented by $\left\{(\rho, \theta, \phi) \mid 0 \leq \rho \leq 1,0 \leq \theta \leq \frac{\pi}{2}, 0 \leq \phi \leq \frac{\pi}{2}\right\}$. Thus

$$
\begin{aligned}
\iiint_{E} x e^{x^{2}+y^{2}+z^{2}} d V= & \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1}(\rho \sin \phi \cos \theta) e^{\rho^{2}} \rho^{2} \sin \phi d \rho d \theta d \phi=\int_{0}^{\pi / 2} \sin ^{2} \phi d \phi \int_{0}^{\pi / 2} \cos \theta d \theta \int_{0}^{1} \rho^{3} e^{\rho^{2}} d \rho \\
= & \left.\int_{0}^{\pi / 2} \frac{1}{2}(1-\cos 2 \phi) d \phi \int_{0}^{\pi / 2} \cos \theta d \theta\left(\frac{1}{2} \rho^{2} e^{\rho^{2}}\right]_{0}^{1}-\int_{0}^{1} \rho e^{\rho^{2}} d \rho\right) \\
& \quad\left[\text { integrate by parts with } u=\rho^{2}, d v=\rho e^{\rho^{2}} d \rho\right] \\
= & {\left[\frac{1}{2} \phi-\frac{1}{4} \sin 2 \phi\right]_{0}^{\pi / 2}[\sin \theta]_{0}^{\pi / 2}\left[\frac{1}{2} \rho^{2} e^{\rho^{2}}-\frac{1}{2} e^{\rho^{2}}\right]_{0}^{1}=\left(\frac{\pi}{4}-0\right)(1-0)\left(0+\frac{1}{2}\right)=\frac{\pi}{8} }
\end{aligned}
$$

26. $\iiint_{E} x y z d V=\int_{0}^{\pi / 3} \int_{0}^{2 \pi} \int_{2}^{4}(\rho \sin \phi \cos \theta)(\rho \sin \phi \sin \theta)(\rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi$

$$
=\int_{0}^{\pi / 3} \sin ^{3} \phi \cos \phi d \phi \int_{0}^{2 \pi} \sin \theta \cos \theta d \theta \int_{2}^{4} \rho^{5} d \rho=\left[\frac{1}{4} \sin ^{4} \phi\right]_{0}^{\pi / 3}\left[\frac{1}{2} \sin ^{2} \theta\right]_{0}^{2 \pi}\left[\frac{1}{6} \rho^{6}\right]_{2}^{4}=0
$$

1. A hemisphere H and a portion P of a paraboloid are shown. Suppose \mathbf{F} is a vector field on \mathbb{R}^{3} whose components have continuous partial derivatives. Explain why

$$
\iint_{H} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{P} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}
$$

2-6 Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$.
2. $\mathbf{F}(x, y, z)=2 y \cos z \mathbf{i}+e^{x} \sin z \mathbf{j}+x e^{y} \mathbf{k}$,
S is the hemisphere $x^{2}+y^{2}+z^{2}=9, z \geqslant 0$, oriented upward
10. $\mathbf{F}(x, y, z)=x y \mathbf{i}+2 z \mathbf{j}+3 y \mathbf{k}, \quad C$ is the curve of intersection of the plane $x+z=5$ and the cylinder $x^{2}+y^{2}=9$
11. (a) Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where

$$
\mathbf{F}(x, y, z)=x^{2} z \mathbf{i}+x y^{2} \mathbf{j}+z^{2} \mathbf{k}
$$

and C is the curve of intersection of the plane $x+y+z=1$ and the cylinder $x^{2}+y^{2}=9$ oriented counterclockwise as viewed from above.
(b) Graph both the plane and the cylinder with domains chosen so that you can see the curve C and the surface that you used in part (a).
F (c) Find parametric equations for C and use them to graph C.
12. (a) Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=x^{2} y \mathbf{i}+\frac{1}{3} x^{3} \mathbf{j}+x y \mathbf{k}$ and C is the curve of intersection of the hyperbolic paraboloid $z=y^{2}-x^{2}$ and the cylinder $x^{2}+y^{2}=1$ oriented counterclockwise as viewed from above.
(b) Graph both the hyperbolic paraboloid and the cylinder with domains chosen so that you can see the curve C and the surface that you used in part (a).
(c) Find parametric equations for C and use them to graph C.
3. $\mathbf{F}(x, y, z)=x^{2} z^{2} \mathbf{i}+y^{2} z^{2} \mathbf{j}+x y z \mathbf{k}$,

Sis the part of the paraboloid $z=x^{2}+y^{2}$ that lies inside the cylinder $x^{2}+y^{2}=4$, oriented upward
4. $\mathbf{F}(x, y, z)=\tan ^{-1}\left(x^{2} y z^{2}\right) \mathbf{i}+x^{2} y \mathbf{j}+x^{2} z^{2} \mathbf{k}$,
S is the cone $x=\sqrt{y^{2}+z^{2}}, 0 \leqslant x \leqslant 2$, oriented in the direction of the positive x-axis
5. $\mathbf{F}(x, y, z)=x y z \mathbf{i}+x y \mathbf{j}+x^{2} y z \mathbf{k}$, S consists of the top and the four sides (but not the bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$, oriented outward
6. $\mathbf{F}(x, y, z)=e^{x y} \mathbf{i}+e^{x z} \mathbf{j}+x^{2} z \mathbf{k}$,
S is the half of the ellipsoid $4 x^{2}+y^{2}+4 z^{2}=4$ that lies to the right of the $x z$-plane, oriented in the direction of the positive y-axis

7-10 Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. In each case C is oriented counterclockwise as viewed from above.
7. $\mathbf{F}(x, y, z)=\left(x+y^{2}\right) \mathbf{i}+\left(y+z^{2}\right) \mathbf{j}+\left(z+x^{2}\right) \mathbf{k}$, C is the triangle with vertices $(1,0,0),(0,1,0)$, and $(0,0,1)$
8. $\mathbf{F}(x, y, z)=\mathbf{i}+(x+y z) \mathbf{j}+(x y-\sqrt{z}) \mathbf{k}$,
C is the boundary of the part of the plane $3 x+2 y+z=1$ in the first octant

13-15 Verify that Stokes' Theorem is true for the given vector field \mathbf{F} and surface S.
13. $\mathbf{F}(x, y, z)=-y \mathbf{i}+x \mathbf{j}-2 \mathbf{k}$,
S is the cone $z^{2}=x^{2}+y^{2}, 0 \leqslant z \leqslant 4$, oriented downward
14. $\mathbf{F}(x, y, z)=-2 y z \mathbf{i}+y \mathbf{j}+3 x \mathbf{k}$,
S is the part of the paraboloid $z=5-x^{2}-y^{2}$ that lies above the plane $z=1$, oriented upward
15. $\mathbf{F}(x, y, z)=y \mathbf{i}+z \mathbf{j}+x \mathbf{k}$,
S is the hemisphere $x^{2}+y^{2}+z^{2}=1, y \geqslant 0$, oriented in the direction of the positive y-axis
16. Let C be a simple closed smooth curve that lies in the plane $x+y+z=1$. Show that the line integral

$$
\int_{C} z d x-2 x d y+3 y d z
$$

depends only on the area of the region enclosed by C and not on the shape of C or its location in the plane.
17. A particle moves along line segments from the origin to the points $(1,0,0),(1,2,1),(0,2,1)$, and back to the origin under the influence of the force field

$$
\mathbf{F}(x, y, z)=z^{2} \mathbf{i}+2 x y \mathbf{j}+4 y^{2} \mathbf{k}
$$

Find the work done.
$684 \square$ CHAPTER 16 VECTOR CALCULUS
48. $u(x, y, z)=c / \sqrt{x^{2}+y^{2}+z^{2}}$,

$$
\begin{aligned}
\mathbf{F} & =-K \nabla u=-K\left[-\frac{c x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \mathbf{i}-\frac{c y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \mathbf{j}-\frac{c z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \mathbf{k}\right] \\
& =\frac{c K}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})
\end{aligned}
$$

and the outward unit normal is $\mathbf{n}=\frac{1}{a}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})$.

16.8 Stokes' Theorem

2. The boundary curve C is the circle $x^{2}+y^{2}=9, z=0$ oriented in the counterclockwise direction when viewed from above. A vector equation of C is $\mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}, 0 \leq t \leq 2 \pi$, so $\mathbf{r}^{\prime}(t)=-3 \sin t \mathbf{i}+3 \cos t \mathbf{j}$ and $\mathbf{F}(\mathbf{r}(t))=2(3 \sin t)(\cos 0) \mathbf{i}+e^{3 \cos t}(\sin 0) \mathbf{j}+(3 \cos t) e^{3 \sin t} \mathbf{k}=6 \sin t \mathbf{i}+(3 \cos t) e^{3 \sin t} \mathbf{k}$. Then, by Stokes' Theorem,
$\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{2 \pi}\left(-18 \sin ^{2} t+0+0\right) d t=-18\left[\frac{1}{2} t-\frac{1}{4} \sin 2 t\right]_{0}^{2 \pi}=-18 \pi$.
3. The paraboloid $z=x^{2}+y^{2}$ intersects the cylinder $x^{2}+y^{2}=4$ in the circle $x^{2}+y^{2}=4, z=4$. This boundary curve C should be oriented in the counterclockwise direction when viewed from above, so a vector equation of C is $\mathbf{r}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j}+4 \mathbf{k}, 0 \leq t \leq 2 \pi$. Then $\mathbf{r}^{\prime}(t)=-2 \sin t \mathbf{i}+2 \cos t \mathbf{j}$, $\mathbf{F}(\mathbf{r}(t))=\left(4 \cos ^{2} t\right)(16) \mathbf{i}+\left(4 \sin ^{2} t\right)(16) \mathbf{j}+(2 \cos t)(2 \sin t)(4) \mathbf{k}=64 \cos ^{2} t \mathbf{i}+64 \sin ^{2} t \mathbf{j}+16 \sin t \cos t \mathbf{k}$,
and by Stokes' Theorem,

$$
\begin{aligned}
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S} & =\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{2 \pi}\left(-128 \cos ^{2} t \sin t+128 \sin ^{2} t \cos t+0\right) d t \\
& =128\left[\frac{1}{3} \cos ^{3} t+\frac{1}{3} \sin ^{3} t\right]_{0}^{2 \pi}=0
\end{aligned}
$$

4. The boundary curve C is the circle $y^{2}+z^{2}=4, x=2$ which should be oriented in the counterclockwise direction when viewed from the front, so a vector equation of C is $\mathbf{r}(t)=2 \mathbf{i}+2 \cos t \mathbf{j}+2 \sin t \mathbf{k}, 0 \leq t \leq 2 \pi$. Then $\mathbf{F}(\mathbf{r}(t))=\tan ^{-1}\left(32 \cos t \sin ^{2} t\right) \mathbf{i}+8 \cos t \mathbf{j}+16 \sin ^{2} t \mathbf{k}, \mathbf{r}^{\prime}(t)=-2 \sin t \mathbf{j}+2 \cos t \mathbf{k}$, and $\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=-16 \sin t \cos t+32 \sin ^{2} t \cos t$. Thus

$$
\begin{aligned}
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S} & =\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{2 \pi}\left(-16 \sin t \cos t+32 \sin ^{2} t \cos t\right) d t \\
& =\left[-8 \sin ^{2} t+\frac{32}{3} \sin ^{3} t\right]_{0}^{2 \pi}=0
\end{aligned}
$$

5. C is the square in the plane $z=-1$. Rather than evaluating a line integral around C we can use Equation 3:
$\iint_{S_{1}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S_{2}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$ where S_{1} is the original cube without the bottom and S_{2} is the bottom face of the cube. $\operatorname{curl} \mathbf{F}=x^{2} z \mathbf{i}+(x y-2 x y z) \mathbf{j}+(y-x z) \mathbf{k}$. For S_{2}, we choose $\mathbf{n}=\mathbf{k}$ so that C has the same orientation for both surfaces. Then $\operatorname{curl} \mathbf{F} \cdot \mathbf{n}=y-x z=x+y$ on S_{2}, where $z=-1$. Thus $\iint_{S_{2}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\int_{-1}^{1} \int_{-1}^{1}(x+y) d x d y=0$ so $\iint_{S_{1}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=0$.
6. The boundary curve C is the circle $x^{2}+z^{2}=1, y=0$ which should be oriented in the counterclockwise direction when viewed from the right, so a vector equation of C is $\mathbf{r}(t)=\cos (-t) \mathbf{i}+\sin (-t) \mathbf{k}=\cos t \mathbf{i}-\sin t \mathbf{k}, 0 \leq t \leq 2 \pi$. Then $\mathbf{F}(\mathbf{r}(t))=\mathbf{i}+e^{-\cos t \sin t} \mathbf{j}-\cos ^{2} t \sin t \mathbf{k}, \mathbf{r}^{\prime}(t)=-\sin t \mathbf{i}-\cos t \mathbf{k}$, and $\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=-\sin t+\cos ^{3} t \sin t$. Thus $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{2 \pi}\left(-\sin t+\cos ^{3} t \sin t\right) d t$ $=\left[\cos t-\frac{1}{4} \cos ^{4} t\right]_{0}^{2 \pi}=0$
7. curl $\mathbf{F}=-2 z \mathbf{i}-2 x \mathbf{j}-2 y \mathbf{k}$ and we take the surface S to be the planar region enclosed by C, so S is the portion of the plane $x+y+z=1$ over $D=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1-x\}$. Since C is oriented counterclockwise, we orient S upward.

note

Hight is Z
$=1-x-y$
r_x X r_y
$=<-\mathrm{dz} / \mathrm{dx}$,
-1>
so we
substitute for dS
with <-1,
-1, 1>
$\mathrm{dz} / \mathrm{dy}, \mathbf{1 >}=8 . \operatorname{curl} \mathbf{F}=(x-y) \mathbf{i}-y \mathbf{j}+\mathbf{k}$ and S is the portion of the plane $3 x+2 y+z=1$ over
$<-1,-1, \quad D=\left\{(x, y) \left\lvert\, 0 \leq x \leq \frac{1}{3}\right., 0 \leq y \leq \frac{1}{2}(1-3 x)\right\}$. We orient S upward and use Equation 16.7.10 with
Using Equation 16.7.10, we have $z=g(x, y)=1-x-y, P=-2 z, Q=-2 x, R=-2 y$, and
$\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}[-(-2 z)(-1)-(-2 x)(-1)+(-2 y)] d A$
$=\int_{0}^{1} \int_{0}^{1-x}(-2) d y d x=-2 \int_{0}^{1}(1-x) d x=-1$
$=g(x, y)=1-3 x-2 y: \gg$
$\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}[-(x-y)(-3)-(-y)(-2)+1] d A=\int_{0}^{1 / 3} \int_{0}^{(1-3 x) / 2}(1+3 x-5 y) d y d x$
$=\int_{0}^{1 / 3}\left[(1+3 x) y-\frac{5}{2} y^{2}\right]_{y=0}^{y=(1-3 x) / 2} d x=\int_{0}^{1 / 3}\left[\frac{1}{2}(1+3 x)(1-3 x)-\frac{5}{2} \cdot \frac{1}{4}(1-3 x)^{2}\right] d x$
$=\int_{0}^{1 / 3}\left(-\frac{81}{8} x^{2}+\frac{15}{4} x-\frac{1}{8}\right) d x=\left[-\frac{27}{8} x^{3}+\frac{15}{8} x^{2}-\frac{1}{8} x\right]_{0}^{1 / 3}=-\frac{1}{8}+\frac{5}{24}-\frac{1}{24}=\frac{1}{24}$

15.6 Exercises

1-12 Find the area of the surface

1. The part of the plane $z=2+3 x+4 y$ that lies above the rectangle $[0,5] \times[1,4]$
2. The part of the plane $2 x+5 y+z=10$ that lies inside the cylinder $x^{2}+y^{2}=9$
3. The part of the plane $3 x+2 y+z=6$ that lies in the first octant
(4) The part of the surface $z=1+3 x+2 y^{2}$ that lies above the triangle with vertices $(0,0),(0,1)$, and $(2,1)$
4. The part of the cylinder $y^{2}+z^{2}=9$ that lies above the rectangle with vertices $(0,0),(4,0),(0,2)$, and $(4,2)$
5. The part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the $x y$-plane
6. The part of the hyperbolic paraboloid $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$
7. The surface $z=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right), 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1$
8. The part of the surface $z=x y$ that lies within the cylinder $x^{2}+y^{2}=1$The part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies above the plane $z=1$
9. The part of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ that lies within the cylinder $x^{2}+y^{2}=a x$ and above the $x y$-plane
10. The part of the sphere $x^{2}+y^{2}+z^{2}=4 z$ that lies inside the paraboloid $z=x^{2}+y^{2}$

13-14 Find the area of the surface correct to four decimal places by expressing the area in terms of a single integral and using your calculator to estimate the integral.
13. The part of the surface $z=e^{-x^{2}-y^{2}}$ that lies above the disk $x^{2}+y^{2} \leqslant 4$
14. The part of the surface $z=\cos \left(x^{2}+y^{2}\right)$ that lies inside the cylinder $x^{2}+y^{2}=1$
15. (a) Use the Midpoint Rule for double integrals (see Section 15.1) with four squares to estimate the surface area of the portion of the paraboloid $z=x^{2}+y^{2}$ that lies above the square $[0,1] \times[0,1]$.
(b) Use a computer algebra system to approximate the surface area in part (a) to four decimal places. Compare with the answer to part (a).
16. (a) Use the Midpoint Rule for double integrals with $m=n=2$ to estimate the area of the surface $z=x y+x^{2}+y^{2}, 0 \leqslant x \leqslant 2,0 \leqslant y \leqslant 2$.
(b) Use a computer algebra system to approximate the surface area in part (a) to four decimal places. Compare with the answer to part (a).
17. Find the exact area of the surface $z=1+2 x+3 y+4 y^{2}$, $1 \leqslant x \leqslant 4,0 \leqslant y \leqslant 1$.18. Find the exact area of the surface

$$
z=1+x+y+x^{2} \quad-2 \leqslant x \leqslant 1 \quad-1 \leqslant y \leqslant 1
$$

Illustrate by graphing the surface.
19. Find, to four decimal places, the area of the part of the surface $z=1+x^{2} y^{2}$ that lies above the disk $x^{2}+y^{2} \leqslant 1$.
20. Find, to four decimal places, the area of the part of the surface $z=\left(1+x^{2}\right) /\left(1+y^{2}\right)$ that lies above the square $|x|+|y| \leqslant 1$. Illustrate by graphing this part of the surface.
21. Show that the area of the part of the plane $z=a x+b y+c$ that projects onto a region D in the $x y$-plane with area $A(D)$ is $\sqrt{a^{2}+b^{2}+1} A(D)$.
22. If you attempt to use Formula 2 to find the area of the top half of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$, you have a slight problem because the double integral is improper. In fact, the integrand has an infinite discontinuity at every point of the boundary circle $x^{2}+y^{2}=a^{2}$. However, the integral can be computed as the limit of the integral over the disk $x^{2}+y^{2} \leqslant t^{2}$ as $t \rightarrow a^{-}$. Use this method to show that the area of a sphere of radius a is $4 \pi a^{2}$.
23. Find the area of the finite part of the paraboloid $y=x^{2}+z^{2}$ cut off by the plane $y=25$. [Hint: Project the surface onto the $x z$-plane.]
24. The figure shows the surface created when the cylinder $y^{2}+z^{2}=1$ intersects the cylinder $x^{2}+z^{2}=1$. Find the area of this surface.

is again r (see the figure). So

$$
\begin{aligned}
E & =k \int_{-\pi / 2}^{\pi / 2} \int_{0}^{20 \cos \theta}\left(1-\frac{1}{20} r\right) r d r d \theta=k \int_{-\pi / 2}^{\pi / 2}\left[\frac{1}{2} r^{2}-\frac{1}{60} r^{3}\right]_{r=0}^{r=20 \cos \theta} d \theta \\
& =k \int_{-\pi / 2}^{\pi / 2}\left(200 \cos ^{2} \theta-\frac{400}{3} \cos ^{3} \theta\right) d \theta=200 k \int_{-\pi / 2}^{\pi / 2}\left[\frac{1}{2}+\frac{1}{2} \cos 2 \theta-\frac{2}{3}\left(1-\sin ^{2} \theta\right) \cos \theta\right] d \theta \\
& =200 k\left[\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta-\frac{2}{3} \sin \theta+\frac{2}{3} \cdot \frac{1}{3} \sin ^{3} \theta\right]_{-\pi / 2}^{\pi / 2}=200 k\left[\frac{\pi}{4}+0-\frac{2}{3}+\frac{2}{9}+\frac{\pi}{4}+0-\frac{2}{3}+\frac{2}{9}\right] \\
& =200 k\left(\frac{\pi}{2}-\frac{8}{9}\right) \approx 136 k
\end{aligned}
$$

Therefore the risk of infection is much lower at the edge of the city than in the middle, so it is better to live at the edge.

15.6 Surface Area

1. Here $z=f(x, y)=2+3 x+4 y$ and D is the rectangle $[0,5] \times[1,4]$, so by Formula 2 the area of the surface is

$$
\begin{aligned}
A(S) & =\iint_{D} \sqrt{\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}+1} d A=\iint_{D} \sqrt{3^{2}+4^{2}+1} d A=\sqrt{26} \iint_{D} d A \\
& =\sqrt{26} A(D)=\sqrt{26}(5)(3)=15 \sqrt{26}
\end{aligned}
$$

2. $z=f(x, y)=10-2 x-5 y$ and D is the disk $x^{2}+y^{2} \leq 9$, so by Formula 2

$$
A(S)=\iint_{D} \sqrt{(-2)^{2}+(-5)^{2}+1} d A=\sqrt{30} \iint_{D} d A=\sqrt{30} A(D)=\sqrt{30}\left(\pi \cdot 3^{2}\right)=9 \sqrt{30} \pi
$$

3. $z=f(x, y)=6-3 x-2 y$ which intersects the $x y$-plane in the line $3 x+2 y=6$, so D is the triangular region given by
$\left\{(x, y) \mid 0 \leq x \leq 2,0 \leq y \leq 3-\frac{3}{2} x\right\}$. Thus

$$
A(S)=\iint_{D} \sqrt{(-3)^{2}+(-2)^{2}+1} d A=\sqrt{14} \iint_{D} d A=\sqrt{14} A(D)=\sqrt{14}\left(\frac{1}{2} \cdot 2 \cdot 3\right)=3 \sqrt{14}
$$

4. $z=f(x, y)=1+3 x+2 y^{2}$ with $0 \leq x \leq 2 y, 0 \leq y \leq 1$. Thus by Formula 2 ,

$$
\begin{aligned}
A(S) & =\iint_{D} \sqrt{1+(3)^{2}+(4 y)^{2}} d A=\int_{0}^{1} \int_{0}^{2 y} \sqrt{10+16 y^{2}} d x d y=\int_{0}^{1} \sqrt{10+16 y^{2}}[x]_{x=0}^{x=2 y} d y \\
& \left.=\int_{0}^{1} 2 y \sqrt{10+16 y^{2}} d y=2 \cdot \frac{1}{32} \cdot \frac{2}{3}\left(10+16 y^{2}\right)^{3 / 2}\right]_{0}^{1}=\frac{1}{24}\left(26^{3 / 2}-10^{3 / 2}\right)
\end{aligned}
$$

5. $y^{2}+z^{2}=9 \Rightarrow z=\sqrt{9-y^{2}} . f_{x}=0, f_{y}=-y\left(9-y^{2}\right)^{-1 / 2} \quad \Rightarrow$

$$
\begin{aligned}
A(S) & =\int_{0}^{4} \int_{0}^{2} \sqrt{0^{2}+\left[-y\left(9-y^{2}\right)^{-1 / 2}\right]^{2}+1} d y d x=\int_{0}^{4} \int_{0}^{2} \sqrt{\frac{y^{2}}{9-y^{2}}+1} d y d x \\
& =\int_{0}^{4} \int_{0}^{2} \frac{3}{\sqrt{9-y^{2}}} d y d x=3 \int_{0}^{4}\left[\sin ^{-1} \frac{y}{3}\right]_{y=0}^{y=2} d x=3\left[\left(\sin ^{-1}\left(\frac{2}{3}\right)\right) x\right]_{0}^{4}=12 \sin ^{-1}\left(\frac{2}{3}\right)
\end{aligned}
$$

6. $z=f(x, y)=4-x^{2}-y^{2}$ and D is the projection of the paraboloid $z=4-x^{2}-y^{2}$ onto the $x y$-plane, that is,

$$
\begin{aligned}
& D=\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\} . \text { So } f_{x}=-2 x, f_{y}=-2 y \Rightarrow \\
& \begin{aligned}
A(S) & =\iint_{D} \sqrt{(-2 x)^{2}+(-2 y)^{2}+1} d A=\iint_{D} \sqrt{4\left(x^{2}+y^{2}\right)+1} d A=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{4 r^{2}+1} r d r d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{1}{12}\left(4 r^{2}+1\right)^{3 / 2}\right]_{r=0}^{r=2} d \theta=\int_{0}^{2 \pi} \frac{1}{12}(17 \sqrt{17}-1) d \theta=\frac{\pi}{6}(17 \sqrt{17}-1)
\end{aligned}
\end{aligned}
$$

$554 \square$ CHAPTER 15 MULTIPLE INTEGRALS
7. $z=f(x, y)=y^{2}-x^{2}$ with $1 \leq x^{2}+y^{2} \leq 4$. Then

$$
\begin{aligned}
A(S) & =\iint_{D} \sqrt{1+4 x^{2}+4 y^{2}} d A=\int_{0}^{2 \pi} \int_{1}^{2} \sqrt{1+4 r^{2}} r d r d \theta=\int_{0}^{2 \pi} d \theta \int_{1}^{2} r \sqrt{1+4 r^{2}} d r \\
& =[\theta]_{0}^{2 \pi}\left[\frac{1}{12}\left(1+4 r^{2}\right)^{3 / 2}\right]_{1}^{2}=\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5})
\end{aligned}
$$

8. $z=f(x, y)=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right)$ and $D=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1\}$. Then $f_{x}=x^{1 / 2}, f_{y}=y^{1 / 2}$ and

$$
\begin{aligned}
A(S) & =\iint_{D} \sqrt{(\sqrt{x})^{2}+(\sqrt{y})^{2}+1} d A=\int_{0}^{1} \int_{0}^{1} \sqrt{x+y+1} d y d x=\int_{0}^{1}\left[\frac{2}{3}(x+y+1)^{3 / 2}\right]_{y=0}^{y=1} d x \\
& =\frac{2}{3} \int_{0}^{1}\left[(x+2)^{3 / 2}-(x+1)^{3 / 2}\right] d x=\frac{2}{3}\left[\frac{2}{5}(x+2)^{5 / 2}-\frac{2}{5}(x+1)^{5 / 2}\right]_{0}^{1} \\
& =\frac{4}{15}\left(3^{5 / 2}-2^{5 / 2}-2^{5 / 2}+1\right)=\frac{4}{15}\left(3^{5 / 2}-2^{7 / 2}+1\right)
\end{aligned}
$$

9. $z=f(x, y)=x y$ with $x^{2}+y^{2} \leq 1$, so $f_{x}=y, f_{y}=x \quad \Rightarrow$

$$
\begin{aligned}
A(S) & =\iint_{D} \sqrt{y^{2}+x^{2}+1} d A=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{r^{2}+1} r d r d \theta=\int_{0}^{2 \pi}\left[\frac{1}{3}\left(r^{2}+1\right)^{3 / 2}\right]_{r=0}^{r=1} d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{3}(2 \sqrt{2}-1) d \theta=\frac{2 \pi}{3}(2 \sqrt{2}-1)
\end{aligned}
$$

10. Given the sphere $x^{2}+y^{2}+z^{2}=4$, when $z=1$, we get $x^{2}+y^{2}=3$ so $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 3\right\}$ and

$$
z=f(x, y)=\sqrt{4-x^{2}-y^{2}} \text {. Thus }
$$

$$
\begin{aligned}
A(S) & =\iint_{D} \sqrt{\left[(-x)\left(4-x^{2}-y^{2}\right)^{-1 / 2}\right]^{2}+\left[(-y)\left(4-x^{2}-y^{2}\right)^{-1 / 2}\right]^{2}+1} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \sqrt{\frac{r^{2}}{4-r^{2}}+1} r d r d \theta=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \sqrt{\frac{r^{2}+4-r^{2}}{4-r^{2}}} r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \frac{2 r}{\sqrt{4-r^{2}}} d r d \theta \\
& \left.=\int_{0}^{2 \pi}\left[-2\left(4-r^{2}\right)^{1 / 2}\right]_{r=0}^{r=\sqrt{3}} d \theta=\int_{0}^{2 \pi}(-2+4) d \theta=2 \theta\right]_{0}^{2 \pi}=4 \pi
\end{aligned}
$$

11. $z=\sqrt{a^{2}-x^{2}-y^{2}}, z_{x}=-x\left(a^{2}-x^{2}-y^{2}\right)^{-1 / 2}, z_{y}=-y\left(a^{2}-x^{2}-y^{2}\right)^{-1 / 2}$,

$$
\begin{aligned}
A(S) & =\iint_{D} \sqrt{\frac{x^{2}+y^{2}}{a^{2}-x^{2}-y^{2}}+1} d A \\
& =\int_{-\pi / 2}^{\pi / 2} \int_{0}^{a \cos \theta} \sqrt{\frac{r^{2}}{a^{2}-r^{2}}+1} r d r d \theta \\
& =\int_{-\pi / 2}^{\pi / 2} \int_{0}^{a \cos \theta} \frac{a r}{\sqrt{a^{2}-r^{2}}} d r d \theta \\
& =\int_{-\pi / 2}^{\pi / 2}\left[-a \sqrt{a^{2}-r^{2}}\right]_{r=0}^{r=a \cos \theta} d \theta \\
& =\int_{-\pi / 2}^{\pi / 2}-a\left(\sqrt{a^{2}-a^{2} \cos ^{2} \theta}-a\right) d \theta=2 a^{2} \int_{0}^{\pi / 2}\left(1-\sqrt{1-\cos ^{2} \theta}\right) d \theta \\
& =2 a^{2} \int_{0}^{\pi / 2} d \theta-2 a^{2} \int_{0}^{\pi / 2} \sqrt{\sin ^{2} \theta} d \theta=a^{2} \pi-2 a^{2} \int_{0}^{\pi / 2} \sin \theta d \theta=a^{2}(\pi-2)
\end{aligned}
$$

38. $\mathbf{r}(u, v)=\left(1-u^{2}-v^{2}\right) \mathbf{i}-v \mathbf{j}-u \mathbf{k} ; \quad(-1,-1,-1)$

39-50 Find the area of the surface.
39. The part of the plane $3 x+2 y+z=6$ that lies in the first octant
40. The part of the plane with vector equation $\mathbf{r}(u, v)=\langle u+v, 2-3 u, 1+u-v\rangle$ that is given by $0 \leqslant u \leqslant 2,-1 \leqslant v \leqslant 1$
41. The part of the plane $x+2 y+3 z=1$ that lies inside the cylinder $x^{2}+y^{2}=3$
42. The part of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies between the plane $y=x$ and the cylinder $y=x^{2}$
43. The surface $z=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right), 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1$
44. The part of the surface $z=1+3 x+2 y^{2}$ that lies above the triangle with vertices $(0,0),(0,1)$, and $(2,1)$
45. The part of the surface $z=x y$ that lies within the cylinder $x^{2}+y^{2}=1$
46. The part of the paraboloid $x=y^{2}+z^{2}$ that lies inside the cylinder $y^{2}+z^{2}=9$
47. The part of the surface $y=4 x+z^{2}$ that lies between the planes $x=0, x=1, z=0$, and $z=1$

33-36 Find an equation of the tangent plane to the given parametric surface at the specified point.
33. $x=u+v, \quad y=3 u^{2}, \quad z=u-v ; \quad(2,3,0)$
34. $x=u^{2}+1, \quad y=v^{3}+1, \quad z=u+v ; \quad(5,2,3)$
(35. $\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+v \mathbf{k} ; \quad u=1, v=\pi / 3$
36. $\mathbf{r}(u, v)=\sin u \mathbf{i}+\cos u \sin v \mathbf{j}+\sin v \mathbf{k}$;
$u=\pi / 6, v=\pi / 6$

CAS 37-38 Find an equation of the tangent plane to the given parametric surface at the specified point. Graph the surface and the tangent plane.
37. $\mathbf{r}(u, v)=u^{2} \mathbf{i}+2 u \sin v \mathbf{j}+u \cos v \mathbf{k} ; \quad u=1, v=0$
\square
33. $\mathbf{r}(u, v)=(u+v) \mathbf{i}+3 u^{2} \mathbf{j}+(u-v) \mathbf{k}$.
$\mathbf{r}_{u}=\mathbf{i}+6 u \mathbf{j}+\mathbf{k}$ and $\mathbf{r}_{v}=\mathbf{i}-\mathbf{k}$, so $\mathbf{r}_{u} \times \mathbf{r}_{v}=-6 u \mathbf{i}+2 \mathbf{j}-6 u \mathbf{k}$. Since the point ($2,3,0$) corresponds to $u=1, v=1$, a normal vector to the surface at $(2,3,0)$ is $-6 \mathbf{i}+2 \mathbf{j}-6 \mathbf{k}$, and an equation of the tangent plane is $-6 x+2 y-6 z=-6$ or $3 x-y+3 z=3$.
34. $\mathbf{r}(u, v)=\left(u^{2}+1\right) \mathbf{i}+\left(v^{3}+1\right) \mathbf{j}+(u+v) \mathbf{k}$.
$\mathbf{r}_{u}=2 u \mathbf{i}+\mathbf{k}$ and $\mathbf{r}_{v}=3 v^{2} \mathbf{j}+\mathbf{k}$, so $\mathbf{r}_{u} \times \mathbf{r}_{v}=-3 v^{2} \mathbf{i}-2 u \mathbf{j}+6 u v^{2} \mathbf{k}$. Since the point $(5,2,3)$ corresponds to $u=2$,
$v=1$, a normal vector to the surface at $(5,2,3)$ is $-3 \mathbf{i}-4 \mathbf{j}+12 \mathbf{k}$, and an equation of the tangent plane is
$-3(x-5)-4(y-2)+12(z-3)=0$ or $3 x+4 y-12 z=-13$.
35. $\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+v \mathbf{k} \Rightarrow \mathbf{r}\left(1, \frac{\pi}{3}\right)=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, \frac{\pi}{3}\right)$.
$\mathbf{r}_{u}=\cos v \mathbf{i}+\sin v \mathbf{j}$ and $\mathbf{r}_{v}=-u \sin v \mathbf{i}+u \cos v \mathbf{j}+\mathbf{k}$, so a normal vector to the surface at the point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, \frac{\pi}{3}\right)$ is $\mathbf{r}_{u}\left(1, \frac{\pi}{3}\right) \times \mathbf{r}_{v}\left(1, \frac{\pi}{3}\right)=\left(\frac{1}{2} \mathbf{i}+\frac{\sqrt{3}}{2} \mathbf{j}\right) \times\left(-\frac{\sqrt{3}}{2} \mathbf{i}+\frac{1}{2} \mathbf{j}+\mathbf{k}\right)=\frac{\sqrt{3}}{2} \mathbf{i}-\frac{1}{2} \mathbf{j}+\mathbf{k}$. Thus an equation of the tangent plane at $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, \frac{\pi}{3}\right)$ is $\frac{\sqrt{3}}{2}\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(y-\frac{\sqrt{3}}{2}\right)+1\left(z-\frac{\pi}{3}\right)=0$ or $\frac{\sqrt{3}}{2} x-\frac{1}{2} y+z=\frac{\pi}{3}$.
36. $\mathbf{r}(u, v)=\sin u \mathbf{i}+\cos u \sin v \mathbf{j}+\sin v \mathbf{k} \Rightarrow \mathbf{r}\left(\frac{\pi}{6}, \frac{\pi}{6}\right)=\left(\frac{1}{2}, \frac{\sqrt{3}}{4}, \frac{1}{2}\right)$.
$\mathbf{r}_{u}=\cos u \mathbf{i}-\sin u \sin v \mathbf{j}$ and $\mathbf{r}_{v}=\cos u \cos v \mathbf{j}+\cos v \mathbf{k}$, so a normal vector to the surface at the point $\left(\frac{1}{2}, \frac{\sqrt{3}}{4}, \frac{1}{2}\right)$ is
$\mathbf{r}_{u}\left(\frac{\pi}{6}, \frac{\pi}{6}\right) \times \mathbf{r}_{v}\left(\frac{\pi}{6}, \frac{\pi}{6}\right)=\left(\frac{\sqrt{3}}{2} \mathbf{i}-\frac{1}{4} \mathbf{j}\right) \times\left(\frac{3}{4} \mathbf{j}+\frac{\sqrt{3}}{2} \mathbf{k}\right)=-\frac{\sqrt{3}}{8} \mathbf{i}-\frac{3}{4} \mathbf{j}+\frac{3 \sqrt{3}}{8} \mathbf{k}$.
Thus an equation of the tangent plane at $\left(\frac{1}{2}, \frac{\sqrt{3}}{4}, \frac{1}{2}\right)$ is $-\frac{\sqrt{3}}{8}\left(x-\frac{1}{2}\right)-\frac{3}{4}\left(y-\frac{\sqrt{3}}{4}\right)+\frac{3 \sqrt{3}}{8}\left(z-\frac{1}{2}\right)=0$ or $\sqrt{3} x+6 y-3 \sqrt{3} z=\frac{\sqrt{3}}{2}$ or $2 x+4 \sqrt{3} y-6 z=1$.
37. $\mathbf{r}(u, v)=u^{2} \mathbf{i}+2 u \sin v \mathbf{j}+u \cos v \mathbf{k} \Rightarrow \mathbf{r}(1,0)=(1,0,1)$.
$\mathbf{r}_{u}=2 u \mathbf{i}+2 \sin v \mathbf{j}+\cos v \mathbf{k}$ and $\mathbf{r}_{v}=2 u \cos v \mathbf{j}-u \sin v \mathbf{k}$,
so a normal vector to the surface at the point $(1,0,1)$ is
$\mathbf{r}_{u}(1,0) \times \mathbf{r}_{v}(1,0)=(2 \mathbf{i}+\mathbf{k}) \times(2 \mathbf{j})=-2 \mathbf{i}+4 \mathbf{k}$.
Thus an equation of the tangent plane at $(1,0,1)$ is
$-2(x-1)+0(y-0)+4(z-1)=0$ or $-x+2 z=1$.

38. $\mathbf{r}(u, v)=\left(1-u^{2}-v^{2}\right) \mathbf{i}-v \mathbf{j}-u \mathbf{k}$.
$\mathbf{r}_{u}=-2 u \mathbf{i}-\mathbf{k}$ and $\mathbf{r}_{v}=-2 v \mathbf{i}-\mathbf{j}$. Since the point $(-1,-1,-1)$
corresponds to $u=1, v=1$, a normal vector to the surface at
$(-1,-1,-1)$ is
$\mathbf{r}_{u}(1,1) \times \mathbf{r}_{v}(1,1)=(-2 \mathbf{i}-\mathbf{k}) \times(-2 \mathbf{i}-\mathbf{j})=-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$.

Thus an equation of the tangent plane is $-1(x+1)+2(y+1)+2(z+1)=0$ or $-x+2 y+2 z=-3$.
39. The surface S is given by $z=f(x, y)=6-3 x-2 y$ which intersects the $x y$-plane in the line $3 x+2 y=6$, so D is the triangular region given by $\left\{(x, y) \mid 0 \leq x \leq 2,0 \leq y \leq 3-\frac{3}{2} x\right\}$. By Formula 9 , the surface area of S is

$$
\begin{aligned}
A(S) & =\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A \\
& =\iint_{D} \sqrt{1+(-3)^{2}+(-2)^{2}} d A=\sqrt{14} \iint_{D} d A=\sqrt{14} A(D)=\sqrt{14}\left(\frac{1}{2} \cdot 2 \cdot 3\right)=3 \sqrt{14}
\end{aligned}
$$

40. $\mathbf{r}_{u}=\langle 1,-3,1\rangle, \mathbf{r}_{v}=\langle 1,0,-1\rangle$, and $\mathbf{r}_{u} \times \mathbf{r}_{v}=\langle 3,2,3\rangle$. Then by Definition 6 ,

$$
A(S)=\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A=\int_{0}^{2} \int_{-1}^{1}|\langle 3,2,3\rangle| d v d u=\sqrt{22} \int_{0}^{2} d u \int_{-1}^{1} d v=\sqrt{22}(2)(2)=4 \sqrt{22}
$$

41. Here we can write $z=f(x, y)=\frac{1}{3}-\frac{1}{3} x-\frac{2}{3} y$ and D is the disk $x^{2}+y^{2} \leq 3$, so by Formula 9 the area of the surface is

$$
\begin{aligned}
A(S) & =\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A=\iint_{D} \sqrt{1+\left(-\frac{1}{3}\right)^{2}+\left(-\frac{2}{3}\right)^{2}} d A=\frac{\sqrt{14}}{3} \iint_{D} d A \\
& =\frac{\sqrt{14}}{3} A(D)=\frac{\sqrt{14}}{3} \cdot \pi(\sqrt{3})^{2}=\sqrt{14} \pi
\end{aligned}
$$

42. $z=f(x, y)=\sqrt{x^{2}+y^{2}} \Rightarrow \frac{\partial z}{\partial x}=\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2} \cdot 2 x=\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{\partial z}{\partial y}=\frac{y}{\sqrt{x^{2}+y^{2}}}$, and

$$
\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}=\sqrt{1+\frac{x^{2}}{x^{2}+y^{2}}+\frac{y^{2}}{x^{2}+y^{2}}}=\sqrt{1+\frac{x^{2}+y^{2}}{x^{2}+y^{2}}}=\sqrt{2}
$$

Here D is given by $\left\{(x, y) \mid 0 \leq x \leq 1, x^{2} \leq y \leq x\right\}$, so by Formula 9 , the surface area of S is

$$
A(S)=\iint_{D} \sqrt{2} d A=\int_{0}^{1} \int_{x^{2}}^{x} \sqrt{2} d y d x=\sqrt{2} \int_{0}^{1}\left(x-x^{2}\right) d x=\sqrt{2}\left[\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{1}=\sqrt{2}\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{\sqrt{2}}{6}
$$

43. $z=f(x, y)=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right)$ and $D=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1\}$. Then $f_{x}=x^{1 / 2}, f_{y}=y^{1 / 2}$ and

$$
\begin{aligned}
A(S) & =\iint_{D} \sqrt{1+(\sqrt{x})^{2}+(\sqrt{y})^{2}} d A=\int_{0}^{1} \int_{0}^{1} \sqrt{1+x+y} d y d x \\
& =\int_{0}^{1}\left[\frac{2}{3}(x+y+1)^{3 / 2}\right]_{y=0}^{y=1} d x=\frac{2}{3} \int_{0}^{1}\left[(x+2)^{3 / 2}-(x+1)^{3 / 2}\right] d x \\
& =\frac{2}{3}\left[\frac{2}{5}(x+2)^{5 / 2}-\frac{2}{5}(x+1)^{5 / 2}\right]_{0}^{1}=\frac{4}{15}\left(3^{5 / 2}-2^{5 / 2}-2^{5 / 2}+1\right)=\frac{4}{15}\left(3^{5 / 2}-2^{7 / 2}+1\right)
\end{aligned}
$$

44. $z=f(x, y)=1+3 x+2 y^{2}$ with $0 \leq x \leq 2 y, 0 \leq y \leq 1$. Thus, by Formula 9 ,

$$
\begin{aligned}
A(S) & =\iint_{D} \sqrt{1+3^{2}+(4 y)^{2}} d A=\int_{0}^{1} \int_{0}^{2 y} \sqrt{10+16 y^{2}} d x d y=\int_{0}^{1} 2 y \sqrt{10+16 y^{2}} d y \\
& \left.=\frac{1}{16} \cdot \frac{2}{3}\left(10+16 y^{2}\right)^{3 / 2}\right]_{0}^{1}=\frac{1}{24}\left(26^{3 / 2}-10^{3 / 2}\right)
\end{aligned}
$$

45. $z=f(x, y)=x y$ with $x^{2}+y^{2} \leq 1$, so $f_{x}=y, f_{y}=x \quad \Rightarrow$

$$
\begin{aligned}
A(S) & =\iint_{D} \sqrt{1+y^{2}+x^{2}} d A=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{r^{2}+1} r d r d \theta=\int_{0}^{2 \pi}\left[\frac{1}{3}\left(r^{2}+1\right)^{3 / 2}\right]_{r=0}^{r=1} d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{3}(2 \sqrt{2}-1) d \theta=\frac{2 \pi}{3}(2 \sqrt{2}-1)
\end{aligned}
$$

46. A parametric representation of the surface is $x=y^{2}+z^{2}, y=y, z=z$ with $0 \leq y^{2}+z^{2} \leq 9$.

Hence $\mathbf{r}_{y} \times \mathbf{r}_{z}=(2 y \mathbf{i}+\mathbf{j}) \times(2 z \mathbf{i}+\mathbf{k})=\mathbf{i}-2 y \mathbf{j}-2 z \mathbf{k}$.
Note: In general, if $x=f(y, z)$ then $\mathbf{r}_{y} \times \mathbf{r}_{z}=\mathbf{i}-\frac{\partial f}{\partial y} \mathbf{j}-\frac{\partial f}{\partial z} \mathbf{k}$, and $A(S)=\iint_{D} \sqrt{1+\left(\frac{\partial f}{\partial y}\right)^{2}+\left(\frac{\partial f}{\partial z}\right)^{2}} d A$. Then

$$
\begin{aligned}
A(S) & =\iint_{0 \leq y^{2}+z^{2} \leq 9} \sqrt{1+4 y^{2}+4 z^{2}} d A=\int_{0}^{2 \pi} \int_{0}^{3} \sqrt{1+4 r^{2}} r d r d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{3} r \sqrt{1+4 r^{2}} d r=2 \pi\left[\frac{1}{12}\left(1+4 r^{2}\right)^{3 / 2}\right]_{0}^{3}=\frac{\pi}{6}(37 \sqrt{37}-1)
\end{aligned}
$$

FIGURE 2

Notice from Figure 2 that the tangent vector points in the direction of increasing t. (See Exercise 58.)

The helix and the tangent line in Example 3 are shown in Figure 3.

EXAMPLE 1

(a) Find the derivative of $\mathbf{r}(t)=\left(1+t^{3}\right) \mathbf{i}+t e^{-t} \mathbf{j}+\sin 2 t \mathbf{k}$.
(b) Find the unit tangent vector at the point where $t=0$.

SOLUTION
(a) According to Theorem 2, we differentiate each component of \mathbf{r} :

$$
\mathbf{r}^{\prime}(t)=3 t^{2} \mathbf{i}+(1-t) e^{-t} \mathbf{j}+2 \cos 2 t \mathbf{k}
$$

(b) Since $\mathbf{r}(0)=\mathbf{i}$ and $\mathbf{r}^{\prime}(0)=\mathbf{j}+2 \mathbf{k}$, the unit tangent vector at the point $(1,0,0)$ is

$$
\mathbf{T}(0)=\frac{\mathbf{r}^{\prime}(0)}{\left|\mathbf{r}^{\prime}(0)\right|}=\frac{\mathbf{j}+2 \mathbf{k}}{\sqrt{1+4}}=\frac{1}{\sqrt{5}} \mathbf{j}+\frac{2}{\sqrt{5}} \mathbf{k}
$$

EXAMPLE 2 For the curve $\mathbf{r}(t)=\sqrt{t} \mathbf{i}+(2-t) \mathbf{j}$, find $\mathbf{r}^{\prime}(t)$ and sketch the position vector $\mathbf{r}(1)$ and the tangent vector $\mathbf{r}^{\prime}(1)$.
solution We have

$$
\mathbf{r}^{\prime}(t)=\frac{1}{2 \sqrt{t}} \mathbf{i}-\mathbf{j} \quad \text { and } \quad \mathbf{r}^{\prime}(1)=\frac{1}{2} \mathbf{i}-\mathbf{j}
$$

The curve is a plane curve and elimination of the parameter from the equations $x=\sqrt{t}, y=2-t$ gives $y=2-x^{2}, x \geqslant 0$. In Figure 2 we draw the position vector $\mathbf{r}(1)=\mathbf{i}+\mathbf{j}$ starting at the origin and the tangent vector $\mathbf{r}^{\prime}(1)$ starting at the corresponding point $(1,1)$.

EXAMPLE 3 Find parametric equations for the tangent line to the helix with parametric equations

$$
x=2 \cos t \quad y=\sin t \quad z=t
$$

at the point $(0,1, \pi / 2)$.
SOLUTION The vector equation of the helix is $\mathbf{r}(t)=\langle 2 \cos t, \sin t, t\rangle$, so

$$
\mathbf{r}^{\prime}(t)=\langle-2 \sin t, \cos t, 1\rangle
$$

The parameter value corresponding to the point $(0,1, \pi / 2)$ is $t=\pi / 2$, so the tangent vector there is $\mathbf{r}^{\prime}(\pi / 2)=\langle-2,0,1\rangle$. The tangent line is the line through $(0,1, \pi / 2)$ parallel to the vector $\langle-2,0,1\rangle$, so by Equations 12.5.2 its parametric equations are

$$
x=-2 t \quad y=1 \quad z=\frac{\pi}{2}+t
$$

y

FIGURE 3

13.2 EXERCISES

1. The figure shows a curve C given by a vector function $\mathbf{r}(t)$
(a) Draw the vectors $\mathbf{r}(4.5)-\mathbf{r}(4)$ and $\mathbf{r}(4.2)-\mathbf{r}(4)$
(b) Draw the vectors

$$
\frac{\mathbf{r}(4.5)-\mathbf{r}(4)}{0.5} \quad \text { and } \quad \frac{\mathbf{r}(4.2)-\mathbf{r}(4)}{0.2}
$$

(c) Write expressions for $\mathbf{r}^{\prime}(4)$ and the unit tangent vector $\mathbf{T}(4)$.
(d) Draw the vector $\mathbf{T}(4)$.

2. (a) Make a large sketch of the curve described by the vector function $\mathbf{r}(t)=\left\langle t^{2}, t\right\rangle, 0 \leqslant t \leqslant 2$, and draw the vectors $\mathbf{r}(1), \mathbf{r}(1.1)$, and $\mathbf{r}(1.1)-\mathbf{r}(1)$.
(b) Draw the vector $\mathbf{r}^{\prime}(1)$ starting at $(1,1)$, and compare it with the vector

$$
\frac{\mathbf{r}(1.1)-\mathbf{r}(1)}{0.1}
$$

Explain why these vectors are so close to each other in length and direction.
3-8
(a) Sketch the plane curve with the given vector equation.
(b) Find $\mathbf{r}^{\prime}(t)$.
(c) Sketch the position vector $\mathbf{r}(t)$ and the tangent vector $\mathbf{r}^{\prime}(t)$ for the given value of t.
3. $\mathbf{r}(t)=\left\langle t-2, t^{2}+1\right\rangle, \quad t=-1$
4. $\mathbf{r}(t)=\left\langle t^{2}, t^{3}\right\rangle, \quad t=1$
5. $\mathbf{r}(t)=e^{2 t} \mathbf{i}+e^{t} \mathbf{j}, \quad t=0$
6. $\mathbf{r}(t)=e^{t} \mathbf{i}+2 t \mathbf{j}, \quad t=0$
7. $\mathbf{r}(t)=4 \sin t \mathbf{i}-2 \cos t \mathbf{j}, \quad t=3 \pi / 4$
8. $\mathbf{r}(t)=(\cos t+1) \mathbf{i}+(\sin t-1) \mathbf{j}, \quad t=-\pi / 3$

9-16 Find the derivative of the vector function.
9. $\mathbf{r}(t)=\left\langle\sqrt{t-2}, 3,1 / t^{2}\right\rangle$
10. $\mathbf{r}(t)=\left\langle e^{-t}, t-t^{3}, \ln t\right\rangle$
11. $\mathbf{r}(t)=t^{2} \mathbf{i}+\cos \left(t^{2}\right) \mathbf{j}+\sin ^{2} t \mathbf{k}$
12. $\mathbf{r}(t)=\frac{1}{1+t} \mathbf{i}+\frac{t}{1+t} \mathbf{j}+\frac{t^{2}}{1+t} \mathbf{k}$
13. $\mathbf{r}(t)=t \sin t \mathbf{i}+e^{t} \cos t \mathbf{j}+\sin t \cos t \mathbf{k}$
14. $\mathbf{r}(t)=\sin ^{2} a t \mathbf{i}+t e^{b t} \mathbf{j}+\cos ^{2} c t \mathbf{k}$
15. $\mathbf{r}(t)=\mathbf{a}+t \mathbf{b}+t^{2} \mathbf{c}$
16. $\mathbf{r}(t)=t \mathbf{a} \times(\mathbf{b}+t \mathbf{c})$

17-20 Find the unit tangent vector $\mathbf{T}(t)$ at the point with the given value of the parameter t.
17. $\mathbf{r}(t)=\left\langle t^{2}-2 t, 1+3 t, \frac{1}{3} t^{3}+\frac{1}{2} t^{2}\right\rangle, \quad t=2$
18. $\mathbf{r}(t)=\left\langle\tan ^{-1} t, 2 e^{2 t}, 8 t e^{t}\right\rangle, \quad t=0$
19. $\mathbf{r}(t)=\cos t \mathbf{i}+3 t \mathbf{j}+2 \sin 2 t \mathbf{k}, \quad t=0$
20. $\mathbf{r}(t)=\sin ^{2} t \mathbf{i}+\cos ^{2} t \mathbf{j}+\tan ^{2} t \mathbf{k}, \quad t=\pi / 4$
21. If $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$, find $\mathbf{r}^{\prime}(t), \mathbf{T}(1), \mathbf{r}^{\prime \prime}(t)$, and $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)$.
22. If $\mathbf{r}(t)=\left\langle e^{2 t}, e^{-2 t}, t e^{2 t}\right\rangle$, find $\mathbf{T}(0), \mathbf{r}^{\prime \prime}(0)$, and $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)$.

23-26 Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.
23. $x=t^{2}+1, \quad y=4 \sqrt{t}, \quad z=e^{t^{2}-t} ; \quad(2,4,1)$
24. $x=\ln (t+1), \quad y=t \cos 2 t, \quad z=2^{t} ; \quad(0,0,1)$
25. $x=e^{-t} \cos t, \quad y=e^{-t} \sin t, \quad z=e^{-t} ; \quad(1,0,1)$
26. $x=\sqrt{t^{2}+3}, \quad y=\ln \left(t^{2}+3\right), \quad z=t ; \quad(2, \ln 4,1)$
27. Find a vector equation for the tangent line to the curve of intersection of the cylinders $x^{2}+y^{2}=25$ and $y^{2}+z^{2}=20$ at the point $(3,4,2)$.
28. Find the point on the curve $\mathbf{r}(t)=\left\langle 2 \cos t, 2 \sin t, e^{t}\right\rangle$, $0 \leqslant t \leqslant \pi$, where the tangent line is parallel to the plane $\sqrt{3} x+y=1$.

Cas 29-31 Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. Illustrate by graphing both the curve and the tangent line on a common screen.
29. $x=t, y=e^{-t}, z=2 t-t^{2} ; \quad(0,1,0)$
30. $x=2 \cos t, y=2 \sin t, z=4 \cos 2 t ; \quad(\sqrt{3}, 1,2)$
31. $x=t \cos t, y=t, z=t \sin t ; \quad(-\pi, \pi, 0)$
32. (a) Find the point of intersection of the tangent lines to the curve $\mathbf{r}(t)=\langle\sin \pi t, 2 \sin \pi t, \cos \pi t\rangle$ at the points where $t=0$ and $t=0.5$.
7 (b) Illustrate by graphing the curve and both tangent lines.
33. The curves $\mathbf{r}_{1}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ and $\mathbf{r}_{2}(t)=\langle\sin t, \sin 2 t, t\rangle$ intersect at the origin. Find their angle of intersection correct to the nearest degree.
23. The vector equation for the curve is $\mathbf{r}(t)=\left\langle 1+2 \sqrt{t}, t^{3}-t, t^{3}+t\right\rangle$, so $\mathbf{r}^{\prime}(t)=\left\langle 1 / \sqrt{t}, 3 t^{2}-1,3 t^{2}+1\right\rangle$. The point $(3,0,2)$ corresponds to $t=1$, so the tangent vector there is $\mathbf{r}^{\prime}(1)=\langle 1,2,4\rangle$. Thus, the tangent line goes through the point $(3,0,2)$ and is parallel to the vector $\langle 1,2,4\rangle$. Parametric equations are $x=3+t, y=2 t, z=2+4 t$.
24. The vector equation for the curve is $\mathbf{r}(t)=\left\langle e^{t}, t e^{t}, t e^{t^{2}}\right\rangle$, so $\mathbf{r}^{\prime}(t)=\left\langle e^{t}, t e^{t}+e^{t}, 2 t^{2} e^{t^{2}}+e^{t^{2}}\right\rangle$. The point $(1,0,0)$ corresponds to $t=0$, so the tangent vector there is $\mathbf{r}^{\prime}(0)=\langle 1,1,1\rangle$. Thus, the tangent line is parallel to the vector $\langle 1,1,1\rangle$ and includes the point $(1,0,0)$. Parametric equations are $x=1+1 \cdot t=1+t, y=0+1 \cdot t=t, z=0+1 \cdot t=t$.
25. The vector equation for the curve is $\mathbf{r}(t)=\left\langle e^{-t} \cos t, e^{-t} \sin t, e^{-t}\right\rangle$, so

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\left\langle e^{-t}(-\sin t)+(\cos t)\left(-e^{-t}\right), e^{-t} \cos t+(\sin t)\left(-e^{-t}\right),\left(-e^{-t}\right)\right\rangle \\
& =\left\langle-e^{-t}(\cos t+\sin t), e^{-t}(\cos t-\sin t),-e^{-t}\right\rangle
\end{aligned}
$$

The point $(1,0,1)$ corresponds to $t=0$, so the tangent vector there is
$\mathbf{r}^{\prime}(0)=\left\langle-e^{0}(\cos 0+\sin 0), e^{0}(\cos 0-\sin 0),-e^{0}\right\rangle=\langle-1,1,-1\rangle$. Thus, the tangent line is parallel to the vector $\langle-1,1,-1\rangle$ and parametric equations are $x=1+(-1) t=1-t, y=0+1 \cdot t=t, z=1+(-1) t=1-t$.
26. The vector equation for the curve is $\mathbf{r}(t)=\left\langle\sqrt{t^{2}+3}, \ln \left(t^{2}+3\right), t\right\rangle$, so $\mathbf{r}^{\prime}(t)=\left\langle t / \sqrt{t^{2}+3}, 2 t /\left(t^{2}+3\right), 1\right\rangle$. At $(2, \ln 4,1)$, $t=1$ and $\mathbf{r}^{\prime}(1)=\left\langle\frac{1}{2}, \frac{1}{2}, 1\right\rangle$. Thus, parametric equations of the tangent line are $x=2+\frac{1}{2} t, y=\ln 4+\frac{1}{2} t, z=1+t$.

Section 3-1 : Tangent Planes And Linear Approximations - Practice Problems Solutions
2. Find the equation of the tangent plane to $z=x \sqrt{x^{2}+y^{2}}+y^{3}$ at $(-4,3)$.

First, we know we'll need the two $1^{\text {st }}$ order partial derivatives. Here they are,

$$
f_{x}=\sqrt{x^{2}+y^{2}}+\frac{x^{2}}{\sqrt{x^{2}+y^{2}}} \quad f_{y}=\frac{x y}{\sqrt{x^{2}+y^{2}}}+3 y^{2}
$$

Now we also need the two derivatives from the first step and the function evaluated at $(-4,3)$. Here are those evaluations,

$$
f(-4,3)=7 \quad f_{x}(-4,3)=\frac{41}{5} \quad f_{y}(-4,3)=\frac{123}{5}
$$

The tangent plane is then,

$$
z=7+\frac{41}{5}(x+4)+\frac{123}{5}(y-3)=\frac{41}{5} x+\frac{123}{5} y-34
$$

Section 3-1 : Tangent Planes And Linear Approximations - Practice Problems Solutions

3. Find the linear approximation to $z=4 x^{2}-y \mathbf{e}^{2 x+y}$ at $(-2,4)$.Then approximate $\mathrm{f}(-1.08,4.02)$

Recall that the linear approximation to a function at a point is really nothing more than the tangent plane to that function at the point.
So, we know that we'll first need the two $1^{\text {st }}$ order partial derivatives. Here they are,

$$
f_{x}=8 x-2 y \mathbf{e}^{2 x+y} \quad f_{y}=-\mathbf{e}^{2 x+y}-y \mathbf{e}^{2 x+y}
$$

Now we also need the two derivatives from the first step and the function evaluated at $(-2,4)$. Here are those evaluations,

$$
f(-2,4)=12 \quad f_{x}(-2,4)=-24 \quad f_{y}(-2,4)=-5
$$

The linear approximation is then,

$$
L(x, y)=12-24(x+2)-5(y-4)=-24 x-5 y-16
$$

FIGURE 11

with center the origin and radius a, where a is chosen to be small enough that C^{\prime} lies inside C. (See Figure 11.) Let D be the region bounded by C and C^{\prime}. Then its positively oriented boundary is $C \cup\left(-C^{\prime}\right)$ and so the general version of Green's Theorem gives

$$
\begin{aligned}
\int_{C} P d x+Q d y+\int_{-C^{\prime}} P d x+Q d y & =\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A \\
& =\iint_{D}\left[\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right] d A=0
\end{aligned}
$$

Therefore

$$
\int_{C} P d x+Q d y=\int_{C^{\prime}} P d x+Q d y
$$

that is,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r}
$$

We now easily compute this last integral using the parametrization given by $\mathbf{r}(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}, 0 \leqslant t \leqslant 2 \pi$. Thus

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{0}^{2 \pi} \frac{(-a \sin t)(-a \sin t)+(a \cos t)(a \cos t)}{a^{2} \cos ^{2} t+a^{2} \sin ^{2} t} d t=\int_{0}^{2 \pi} d t=2 \pi
\end{aligned}
$$

We end this section by using Green's Theorem to discuss a result that was stated in the preceding section.

SKETCH OF PROOF OF THEOREM 16.3.6 We're assuming that $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ is a vector field on an open simply-connected region D, that P and Q have continuous first-order partial derivatives, and that

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \quad \text { throughout } D
$$

If C is any simple closed path in D and R is the region that C encloses, then Green's Theorem gives

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\oint_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\iint_{R} 0 d A=0
$$

A curve that is not simple crosses itself at one or more points and can be broken up into a number of simple curves. We have shown that the line integrals of \mathbf{F} around these simple curves are all 0 and, adding these integrals, we see that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for any closed curve C. Therefore $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path in D by Theorem 16.3.3. It follows that \mathbf{F} is a conservative vector field.

(奴) using Green's Theorem.

1. $\oint_{C}(x-y) d x+(x+y) d y$,
C is the circle with center the origin and radius 2
2) $\oint_{C} x y d x+x^{2} d y$,
C is the rectangle with vertices $(0,0),(3,0),(3,1)$, and $(0,1)$ 3. $\dot{C}_{C} x y d x+x^{2} y^{3} d y$,
C is the triangle with vertices $(0,0),(1,0)$, and $(1,2)$

(3)
$\oint_{C} x^{2} y^{2} d x+x y d y, \quad C$ consists of the arc of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$ and the line segments from $(1,1)$ to $(0,1)$ and from $(0,1)$ to $(0,0)$

5-10 Use Green's Theorem to evaluate the line integral along the given positively oriented curve.
5. $\int_{C} x y^{2} d x+2 x^{2} y d y$,
C_{C} is the triangle with vertices $(0,0),(2,2)$, and $(2,4)$
6. $\int_{C} \cos y d x+x^{2} \sin y d y$,
C is the rectangle with vertices $(0,0),(5,0),(5,2)$, and $(0,2)$
7. $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y$,
C is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$
8. $\int_{C} y^{4} d x+2 x y^{3} d y, \quad C$ is the ellipse $x^{2}+2 y^{2}=2$
9. $\int_{C} y^{3} d x-x^{3} d y, \quad C$ is the circle $x^{2}+y^{2}=4$
10. $\int_{C}\left(1-y^{3}\right) d x+\left(x^{3}+e^{y^{2}}\right) d y, \quad C$ is the boundary of the region between the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$

11-14 Use Green's Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. (Check the orientation of the curve before applying the theorem.)
11. $\mathbf{F}(x, y)=\langle y \cos x-x y \sin x, x y+x \cos x\rangle$, C is the triangle from $(0,0)$ to $(0,4)$ to $(2,0)$ to $(0,0)$$\mathbf{F}(x, y)=\left\langle e^{-x}+y^{2}, e^{-y}+x^{2}\right\rangle$,
C consists of the arc of the curve $y=\cos x$ from $(-\pi / 2,0)$ to $(\pi / 2,0)$ and the line segment from $(\pi / 2,0)$ to $(-\pi / 2,0)$
13. $\mathbf{F}(x, y)=\langle y-\cos y, x \sin y\rangle$,
C is the circle $(x-3)^{2}+(y+4)^{2}=4$ oriented clockwise$\mathbf{F}(x, y)=\left\langle\sqrt{x^{2}+1}, \tan ^{-1} x\right\rangle, \quad C$ is the triangle from $(0,0)$ to $(1,1)$ to $(0,1)$ to $(0,0)$

15-16 Verify Green's Theorem by using a computer algebra system to evaluate both the line integral and the double integral.
15. $P(x, y)=y^{2} e^{x}, \quad Q(x, y)=x^{2} e^{y}$,
C consists of the line segment from $(-1,1)$ to $(1,1)$ followed by the arc of the parabola $y=2-x^{2}$ from $(1,1)$ to $(-1,1)$
16. $P(x, y)=2 x-x^{3} y^{5}, \quad Q(x, y)=x^{3} y^{8}$, C is the ellipse $4 x^{2}+y^{2}=4$
17. Use Green's Theorem to find the work done by the force $\mathbf{F}(x, y)=x(x+y) \mathbf{i}+x y^{2} \mathbf{j}$ in moving a particle from the origin along the x-axis to $(1,0)$, then along the line segment to $(0,1)$, and then back to the origin along the y-axis.
18. A particle starts at the point $(-2,0)$, moves along the x-axis to $(2,0)$, and then along the semicircle $y=\sqrt{4-x^{2}}$ to the starting point. Use Green's Theorem to find the work done on this particle by the force field $\mathbf{F}(x, y)=\left\langle x, x^{3}+3 x y^{2}\right\rangle$.
19. Use one of the formulas in 5 to find the area under one arch of the cycloid $x=t-\sin t, y=1-\cos t$.
20. If a circle C with radius 1 rolls along the outside of the circle $x^{2}+y^{2}=16$, a fixed point P on C traces out a curve called an epicycloid, with parametric equations $x=5 \cos t-\cos 5 t, y=5 \sin t-\sin 5 t$. Graph the epicycloid and use 5 to find the area it encloses.
21. (a) If C is the line segment connecting the point $\left(x_{1}, y_{1}\right)$ to the point $\left(x_{2}, y_{2}\right)$, show that

$$
\int_{C} x d y-y d x=x_{1} y_{2}-x_{2} y_{1}
$$

(b) If the vertices of a polygon, in counterclockwise order, are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, show that the area of the polygon is

$$
\begin{aligned}
& A=\frac{1}{2}\left[\left(x_{1} y_{2}-x_{2} y_{1}\right)+\left(x_{2} y_{3}-x_{3} y_{2}\right)+\cdots\right. \\
& \left.\quad+\left(x_{n-1} y_{n}-x_{n} y_{n-1}\right)+\left(x_{n} y_{1}-x_{1} y_{n}\right)\right]
\end{aligned}
$$

(c) Find the area of the pentagon with vertices $(0,0),(2,1)$, $(1,3),(0,2)$, and $(-1,1)$.
22. Let D be a region bounded by a simple closed path C in the $x y$-plane. Use Green's Theorem to prove that the coordinates of the centroid (\bar{x}, \bar{y}) of D are

$$
\bar{x}=\frac{1}{2 A} \oint_{C} x^{2} d y \quad \bar{y}=-\frac{1}{2 A} \oint_{C} y^{2} d x
$$

where A is the area of D.
23. Use Exercise 22 to find the centroid of a quarter-circular region of radius a.
24. Use Exercise 22 to find the centroid of the triangle with vertices $(0,0),(a, 0)$, and (a, b), where $a>0$ and $b>0$.
25. A plane lamina with constant density $\rho(x, y)=\rho$ occupies a region in the $x y$-plane bounded by a simple closed path C. Show that its moments of inertia about the axes are

$$
I_{x}=-\frac{\rho}{3} \oint_{C} y^{3} d x \quad I_{y}=\frac{\rho}{3} \oint_{C} x^{3} d y
$$

26. Use Exercise 25 to find the moment of inertia of a circular disk of radius a with constant density ρ about a diameter. (Compare with Example 4 in Section 15.5.)
27. Use the method of Example 5 to calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where

$$
\mathbf{F}(x, y)=\frac{2 x y \mathbf{i}+\left(y^{2}-x^{2}\right) \mathbf{j}}{\left(x^{2}+y^{2}\right)^{2}}
$$

and C is any positively oriented simple closed curve that encloses the origin.
28. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=\left\langle x^{2}+y, 3 x-y^{2}\right\rangle$ and C is the positively oriented boundary curve of a region D that has area 6.
29. If \mathbf{F} is the vector field of Example 5, show that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for every simple closed path that does not pass through or enclose the origin.
36. (a) Here $\mathbf{F}(\mathbf{r})=c \mathbf{r} /|\mathbf{r}|^{3}$ and $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. Then $f(\mathbf{r})=-c /|\mathbf{r}|$ is a potential function for \mathbf{F}, that is, $\nabla f=\mathbf{F}$.
(See the discussion of gradient fields in Section 16.1.) Hence \mathbf{F} is conservative and its line integral is independent of path.
Let $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$.
$W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=f\left(P_{2}\right)-f\left(P_{1}\right)=-\frac{c}{\left(x_{2}^{2}+y_{2}^{2}+z_{2}^{2}\right)^{1 / 2}}+\frac{c}{\left(x_{1}^{2}+y_{1}^{2}+z_{1}^{2}\right)^{1 / 2}}=c\left(\frac{1}{d_{1}}-\frac{1}{d_{2}}\right)$.
(b) In this case, $c=-(m M G) \quad \Rightarrow$

$$
\begin{aligned}
W & =-m M G\left(\frac{1}{1.52 \times 10^{11}}-\frac{1}{1.47 \times 10^{11}}\right) \\
& =-\left(5.97 \times 10^{24}\right)\left(1.99 \times 10^{30}\right)\left(6.67 \times 10^{-11}\right)\left(-2.2377 \times 10^{-13}\right) \approx 1.77 \times 10^{32} \mathrm{~J}
\end{aligned}
$$

(c) In this case, $c=\epsilon q Q \Rightarrow$
$W=\epsilon q Q\left(\frac{1}{10^{-12}}-\frac{1}{5 \times 10^{-13}}\right)=\left(8.985 \times 10^{9}\right)(1)\left(-1.6 \times 10^{-19}\right)\left(-10^{12}\right) \approx 1400 \mathrm{~J}$.

16.4 Green's Theorem

1. (a) Parametric equations for C are $x=2 \cos t, y=2 \sin t, 0 \leq t \leq 2 \pi$. Then

$$
\begin{aligned}
\oint_{C}(x-y) d x+(x+y) d y & =\int_{0}^{2 \pi}[(2 \cos t-2 \sin t)(-2 \sin t)+(2 \cos t+2 \sin t)(2 \cos t)] d t \\
& \left.=\int_{0}^{2 \pi}\left(4 \sin ^{2} t+4 \cos ^{2} t\right) d t=\int_{0}^{2 \pi} 4 d t=4 t\right]_{0}^{2 \pi}=8 \pi
\end{aligned}
$$

(b) Note that C as given in part (a) is a positively oriented, smooth, simple closed curve. Then by Green's Theorem,

$$
\begin{aligned}
\oint_{C}(x-y) d x+(x+y) d y & =\iint_{D}\left[\frac{\partial}{\partial x}(x+y)-\frac{\partial}{\partial y}(x-y)\right] d A=\iint_{D}[1-(-1)] d A=2 \iint_{D} d A \\
& =2 A(D)=2 \pi(2)^{2}=8 \pi
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
& C_{1}: x=t \Rightarrow d x=d t, y=0 \Rightarrow d y=0 d t, 0 \leq t \leq 3 . \\
& C_{2}: x=3 \Rightarrow d x=0 d t, y=t \Rightarrow d y=d t, 0 \leq t \leq 1 . \\
& C_{3}: x=3-t \Rightarrow d x=-d t, y=1 \Rightarrow d y=0 d t, 0 \leq t \leq 3 . \\
& C_{4}: x=0 \Rightarrow d x=0 d t, y=1-t \Rightarrow d y=-d t, 0 \leq t \leq 1
\end{aligned}
$$

Thus $\quad \oint_{C} x y d x+x^{2} d y=\oint_{C_{1}+C_{2}+C_{3}+C_{4}} x y d x+x^{2} d y=\int_{0}^{3} 0 d t+\int_{0}^{1} 9 d t+\int_{0}^{3}(3-t)(-1) d t+\int_{0}^{1} 0 d t$

$$
=[9 t]_{0}^{1}+\left[\frac{1}{2} t^{2}-3 t\right]_{0}^{3}=9+\frac{9}{2}-9=\frac{9}{2}
$$

(b) $\oint_{C} x y d x+x^{2} d y=\iint_{D}\left[\frac{\partial}{\partial x}\left(x^{2}\right)-\frac{\partial}{\partial y}(x y)\right] d A=\int_{0}^{3} \int_{0}^{1}(2 x-x) d y d x=\int_{0}^{3} x d x \int_{0}^{1} d y=\left[\frac{1}{2} x^{2}\right]_{0}^{3} \cdot 1=\frac{9}{2}$
3. (a)

$C_{1}: x=t \Rightarrow d x=d t, \quad y=0 \quad \Rightarrow \quad d y=0 d t, \quad 0 \leq t \leq 1$.
$C_{2}: x=1 \Rightarrow d x=0 d t, y=t \quad \Rightarrow \quad d y=d t, 0 \leq t \leq 2$.
$C_{3}: x=1-t \Rightarrow d x=-d t, y=2-2 t \Rightarrow d y=-2 d t, \quad 0 \leq t \leq 1$.
\square CHAPTER 16 VECTOR CALCULUS

Thus

$$
\begin{aligned}
\oint_{C} x y d x+x^{2} y^{3} d y & =\underset{C_{1}+C_{2}+C_{3}}{\oint} x y d x+x^{2} y^{3} d y \\
& =\int_{0}^{1} 0 d t+\int_{0}^{2} t^{3} d t+\int_{0}^{1}\left[-(1-t)(2-2 t)-2(1-t)^{2}(2-2 t)^{3}\right] d t \\
& =0+\left[\frac{1}{4} t^{4}\right]_{0}^{2}+\left[\frac{2}{3}(1-t)^{3}+\frac{8}{3}(1-t)^{6}\right]_{0}^{1}=4-\frac{10}{3}=\frac{2}{3}
\end{aligned}
$$

(b) $\oint_{C} x y d x+x^{2} y^{3} d y=\iint_{D}\left[\frac{\partial}{\partial x}\left(x^{2} y^{3}\right)-\frac{\partial}{\partial y}(x y)\right] d A=\int_{0}^{1} \int_{0}^{2 x}\left(2 x y^{3}-x\right) d y d x$

$$
=\int_{0}^{1}\left[\frac{1}{2} x y^{4}-x y\right]_{y=0}^{y=2 x} d x=\int_{0}^{1}\left(8 x^{5}-2 x^{2}\right) d x=\frac{4}{3}-\frac{2}{3}=\frac{2}{3}
$$

4. (a)
 $C_{1}: x=t \quad \Rightarrow \quad d x=d t, y=t^{2} \quad \Rightarrow \quad d y=2 t d t, \quad 0 \leq t \leq 1$ $C_{2}: x=1-t \quad \Rightarrow \quad d x=-d t, y=1 \quad \Rightarrow \quad d y=0 d t, 0 \leq t \leq 1$ $C_{3}: x=0 \Rightarrow d x=0 d t, y=1-t \quad \Rightarrow \quad d y=-d t, \quad 0 \leq t \leq 1$

Thus
$\oint_{C} x^{2} y^{2} d x+x y d y=\oint_{C_{1}+C_{2}+C_{3}} x^{2} y^{2} d x+x y d y$

$$
\begin{aligned}
& =\int_{0}^{1}\left[t^{2}\left(t^{2}\right)^{2} d t+t\left(t^{2}\right)(2 t d t)\right]+\int_{0}^{1}\left[(1-t)^{2}(1)^{2}(-d t)+(1-t)(1)(0 d t)\right] \\
& \quad \quad+\int_{0}^{1}\left[(0)^{2}(1-t)^{2}(0 d t)+(0)(1-t)(-d t)\right] \\
& =\int_{0}^{1}\left(t^{6}+2 t^{4}\right) d t+\int_{0}^{1}\left(-1+2 t-t^{2}\right) d t+\int_{0}^{1} 0 d t \\
& =\left[\frac{1}{7} t^{7}+\frac{2}{5} t^{5}\right]_{0}^{1}+\left[-t+t^{2}-\frac{1}{3} t^{3}\right]_{0}^{1}+0=\left(\frac{1}{7}+\frac{2}{5}\right)+\left(-1+1-\frac{1}{3}\right)=\frac{22}{105}
\end{aligned}
$$

(b) $\oint_{C} x^{2} y^{2} d x+x y d y=\iint_{D}\left[\frac{\partial}{\partial x}(x y)-\frac{\partial}{\partial y}\left(x^{2} y^{2}\right)\right] d A=\int_{0}^{1} \int_{x^{2}}^{1}\left(y-2 x^{2} y\right) d y d x$
$=\int_{0}^{1}\left[\frac{1}{2} y^{2}-x^{2} y^{2}\right]_{y=x^{2}}^{y=1} d x=\int_{0}^{1}\left(\frac{1}{2}-x^{2}-\frac{1}{2} x^{4}+x^{6}\right) d x$
$=\left[\frac{1}{2} x-\frac{1}{3} x^{3}-\frac{1}{10} x^{5}+\frac{1}{7} x^{7}\right]_{0}^{1}=\frac{1}{2}-\frac{1}{3}-\frac{1}{10}+\frac{1}{7}=\frac{22}{105}$
5.

6. The region D enclosed by C is $[0,5] \times[0,2]$, so

$$
\begin{aligned}
\int_{C} \cos y d x+x^{2} \sin y d y & =\iint_{D}\left[\frac{\partial}{\partial x}\left(x^{2} \sin y\right)-\frac{\partial}{\partial y}(\cos y)\right] d A=\int_{0}^{5} \int_{0}^{2}[2 x \sin y-(-\sin y)] d y d x \\
& =\int_{0}^{5}(2 x+1) d x \int_{0}^{2} \sin y d y=\left[x^{2}+x\right]_{0}^{5}[-\cos y]_{0}^{2}=30(1-\cos 2)
\end{aligned}
$$

7. $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y=\iint_{D}\left[\frac{\partial}{\partial x}\left(2 x+\cos y^{2}\right)-\frac{\partial}{\partial y}\left(y+e^{\sqrt{x}}\right)\right] d A$

$$
=\int_{0}^{1} \int_{y^{2}}^{\sqrt{y}}(2-1) d x d y=\int_{0}^{1}\left(y^{1 / 2}-y^{2}\right) d y=\frac{1}{3}
$$

8. $\int_{C} y^{4} d x+2 x y^{3} d y=\iint_{D}\left[\frac{\partial}{\partial x}\left(2 x y^{3}\right)-\frac{\partial}{\partial y}\left(y^{4}\right)\right] d A=\iint_{D}\left(2 y^{3}-4 y^{3}\right) d A$

$$
=-2 \iint_{D} y^{3} d A=0
$$

because $f(x, y)=y^{3}$ is an odd function with respect to y and D is symmetric about the x-axis.
9. $\int_{C} y^{3} d x-x^{3} d y=\iint_{D}\left[\frac{\partial}{\partial x}\left(-x^{3}\right)-\frac{\partial}{\partial y}\left(y^{3}\right)\right] d A=\iint_{D}\left(-3 x^{2}-3 y^{2}\right) d A=\int_{0}^{2 \pi} \int_{0}^{2}\left(-3 r^{2}\right) r d r d \theta$

$$
=-3 \int_{0}^{2 \pi} d \theta \int_{0}^{2} r^{3} d r=-3(2 \pi)(4)=-24 \pi
$$

10. $\int_{C}\left(1-y^{3}\right) d x+\left(x^{3}+e^{y^{2}}\right) d y=\iint_{D}\left[\frac{\partial}{\partial x}\left(x^{3}+e^{y^{2}}\right)-\frac{\partial}{\partial y}\left(1-y^{3}\right)\right] d A=\iint_{D}\left(3 x^{2}+3 y^{2}\right) d A$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{2}^{3}\left(3 r^{2}\right) r d r d \theta=3 \int_{0}^{2 \pi} d \theta \int_{2}^{3} r^{3} d r \\
& =3[\theta]_{0}^{2 \pi}\left[\frac{1}{4} r^{4}\right]_{2}^{3}=3(2 \pi) \cdot \frac{1}{4}(81-16)=\frac{195}{2} \pi
\end{aligned}
$$

11. $\mathbf{F}(x, y)=\langle y \cos x-x y \sin x, x y+x \cos x\rangle$ and the region D enclosed by C is given by $\{(x, y) \mid 0 \leq x \leq 2,0 \leq y \leq 4-2 x\} . C$ is traversed clockwise, so $-C$ gives the positive orientation.
$\int_{C} \mathbf{F} \cdot d \mathbf{r}=-\int_{-C}(y \cos x-x y \sin x) d x+(x y+x \cos x) d y=-\iint_{D}\left[\frac{\partial}{\partial x}(x y+x \cos x)-\frac{\partial}{\partial y}(y \cos x-x y \sin x)\right] d A$

$$
\begin{aligned}
& =-\iint_{D}(y-x \sin x+\cos x-\cos x+x \sin x) d A=-\int_{0}^{2} \int_{0}^{4-2 x} y d y d x \\
& =-\int_{0}^{2}\left[\frac{1}{2} y^{2}\right]_{y=0}^{y=4-2 x} d x=-\int_{0}^{2} \frac{1}{2}(4-2 x)^{2} d x=-\int_{0}^{2}\left(8-8 x+2 x^{2}\right) d x=-\left[8 x-4 x^{2}+\frac{2}{3} x^{3}\right]_{0}^{2} \\
& =-\left(16-16+\frac{16}{3}-0\right)=-\frac{16}{3}
\end{aligned}
$$

12. $\mathbf{F}(x, y)=\left\langle e^{-x}+y^{2}, e^{-y}+x^{2}\right\rangle$ and the region D enclosed by C is given by $\{(x, y) \mid-\pi / 2 \leq x \leq \pi / 2,0 \leq y \leq \cos x\}$.
C is traversed clockwise, so $-C$ gives the positive orientation.

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =-\int_{-C}\left(e^{-x}+y^{2}\right) d x+\left(e^{-y}+x^{2}\right) d y=-\iint_{D}\left[\frac{\partial}{\partial x}\left(e^{-y}+x^{2}\right)-\frac{\partial}{\partial y}\left(e^{-x}+y^{2}\right)\right] d A \\
& =-\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\cos x}(2 x-2 y) d y d x=-\int_{-\pi / 2}^{\pi / 2}\left[2 x y-y^{2}\right]_{y=0}^{y=\cos x} d x \\
& =-\int_{-\pi / 2}^{\pi / 2}\left(2 x \cos x-\cos ^{2} x\right) d x=-\int_{-\pi / 2}^{\pi / 2}\left(2 x \cos x-\frac{1}{2}(1+\cos 2 x)\right) d x \\
& \left.=-\left[2 x \sin x+2 \cos x-\frac{1}{2}\left(x+\frac{1}{2} \sin 2 x\right)\right]_{-\pi / 2}^{\pi / 2} \quad \text { [integrate by parts in the first term }\right] \\
& =-\left(\pi-\frac{1}{4} \pi-\pi-\frac{1}{4} \pi\right)=\frac{1}{2} \pi
\end{aligned}
$$

13. $\mathbf{F}(x, y)=\langle y-\cos y, x \sin y\rangle$ and the region D enclosed by C is the disk with radius 2 centered at $(3,-4)$.
C is traversed clockwise, so $-C$ gives the positive orientation.

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =-\int_{-C}(y-\cos y) d x+(x \sin y) d y=-\iint_{D}\left[\frac{\partial}{\partial x}(x \sin y)-\frac{\partial}{\partial y}(y-\cos y)\right] d A \\
& =-\iint_{D}(\sin y-1-\sin y) d A=\iint_{D} d A=\text { area of } D=\pi(2)^{2}=4 \pi
\end{aligned}
$$

14. $\mathbf{F}(x, y)=\left\langle\sqrt{x^{2}+1}, \tan ^{-1} x\right\rangle$ and the region D enclosed by C is given by $\{(x, y) \mid 0 \leq x \leq 1, x \leq y \leq 1\}$.
C is oriented positively, so

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{C} \sqrt{x^{2}+1} d x+\tan ^{-1} x d y=\iint_{D}\left[\frac{\partial}{\partial x}\left(\tan ^{-1} x\right)-\frac{\partial}{\partial y}\left(\sqrt{x^{2}+1}\right)\right] d A \\
& =\int_{0}^{1} \int_{x}^{1}\left(\frac{1}{1+x^{2}}-0\right) d y d x=\int_{0}^{1} \frac{1}{1+x^{2}}[y]_{y=x}^{y=1} d x=\int_{0}^{1} \frac{1}{1+x^{2}}(1-x) d x \\
& =\int_{0}^{1}\left(\frac{1}{1+x^{2}}-\frac{x}{1+x^{2}}\right) d x=\left[\tan ^{-1} x-\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{0}^{1}=\frac{\pi}{4}-\frac{1}{2} \ln 2
\end{aligned}
$$

15. Here $C=C_{1}+C_{2}$ where
C_{1} can be parametrized as $x=t, \quad y=1,-1 \leq t \leq 1$, and C_{2} is given by $x=-t, \quad y=2-t^{2}, \quad-1 \leq t \leq 1$.

Then the line integral is

$$
\begin{aligned}
\oint_{C_{1}+C_{2}} y^{2} e^{x} d x+x^{2} e^{y} d y=\int_{-1}^{1}[& \left.1 \cdot e^{t}+t^{2} e \cdot 0\right] d t \\
& +\int_{-1}^{1}\left[\left(2-t^{2}\right)^{2} e^{-t}(-1)+(-t)^{2} e^{2-t^{2}}(-2 t)\right] d t
\end{aligned}
$$

$$
=\int_{-1}^{1}\left[e^{t}-\left(2-t^{2}\right)^{2} e^{-t}-2 t^{3} e^{2-t^{2}}\right] d t=-8 e+48 e^{-1}
$$

according to a CAS. The double integral is
$\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\int_{-1}^{1} \int_{1}^{2-x^{2}}\left(2 x e^{y}-2 y e^{x}\right) d y d x=-8 e+48 e^{-1}$, verifying Green's Theorem in this case.
16. We can parametrize C as $x=\cos \theta, y=2 \sin \theta, 0 \leq \theta \leq 2 \pi$. Then the line integral is

$$
\begin{aligned}
\oint_{C} P d x+Q d y & =\int_{0}^{2 \pi}\left[2 \cos \theta-(\cos \theta)^{3}(2 \sin \theta)^{5}\right](-\sin \theta) d \theta+\int_{0}^{2 \pi}(\cos \theta)^{3}(2 \sin \theta)^{8} \cdot 2 \cos \theta d \theta \\
& =\int_{0}^{2 \pi}\left[-2 \cos \theta \sin \theta+32 \cos ^{3} \theta \sin ^{6} \theta+512 \cos ^{4} \theta \sin ^{8} \theta\right] d \theta=7 \pi
\end{aligned}
$$

according to a CAS. The double integral is $\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\int_{-1}^{1} \int_{-\sqrt{4-4 x^{2}}}^{\sqrt{4-4 x^{2}}}\left(3 x^{2} y^{8}+5 x^{3} y^{4}\right) d y d x=7 \pi$.
17. By Green's Theorem, $W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} x(x+y) d x+x y^{2} d y=\iint_{D}\left(y^{2}-x\right) d A$ where C is the path described in the question and D is the triangle bounded by C. So

$$
\begin{aligned}
W & =\int_{0}^{1} \int_{0}^{1-x}\left(y^{2}-x\right) d y d x=\int_{0}^{1}\left[\frac{1}{3} y^{3}-x y\right]_{y=0}^{y=1-x} d x=\int_{0}^{1}\left(\frac{1}{3}(1-x)^{3}-x(1-x)\right) d x \\
& =\left[-\frac{1}{12}(1-x)^{4}-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}\right]_{0}^{1}=\left(-\frac{1}{2}+\frac{1}{3}\right)-\left(-\frac{1}{12}\right)=-\frac{1}{12}
\end{aligned}
$$

18. By Green's Theorem, $W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} x d x+\left(x^{3}+3 x y^{2}\right) d y=\iint_{D}\left(3 x^{2}+3 y^{2}-0\right) d A$, where D is the semicircular region bounded by C. Converting to polar coordinates, we have $W=3 \int_{0}^{2} \int_{0}^{\pi} r^{2} \cdot r d \theta d r=3 \pi\left[\frac{1}{4} r^{4}\right]_{0}^{2}=12 \pi$.
19. Let C_{1} be the arch of the cycloid from $(0,0)$ to $(2 \pi, 0)$, which corresponds to $0 \leq t \leq 2 \pi$, and let C_{2} be the segment from $(2 \pi, 0)$ to $(0,0)$, so C_{2} is given by $x=2 \pi-t, y=0,0 \leq t \leq 2 \pi$. Then $C=C_{1} \cup C_{2}$ is traversed clockwise, so $-C$ is

FIGURE 4
The vector field $\mathbf{F}=x^{2} \mathbf{i}+y^{2} \mathbf{j}$

Another application of the Divergence Theorem occurs in fluid flow. Let $\mathbf{v}(x, y, z)$ be the velocity field of a fluid with constant density ρ. Then $\mathbf{F}=\rho \mathbf{v}$ is the rate of flow per unit area. If $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ is a point in the fluid and B_{a} is a ball with center P_{0} and very small radius a, then $\operatorname{div} \mathbf{F}(P) \approx \operatorname{div} \mathbf{F}\left(P_{0}\right)$ for all points in B_{a} since $\operatorname{div} \mathbf{F}$ is continuous. We approximate the flux over the boundary sphere S_{a} as follows:

$$
\iint_{S_{a}} \mathbf{F} \cdot d \mathbf{S}=\iiint_{B_{a}} \operatorname{div} \mathbf{F} d V \approx \iiint_{B_{a}} \operatorname{div} \mathbf{F}\left(P_{0}\right) d V=\operatorname{div} \mathbf{F}\left(P_{0}\right) V\left(B_{a}\right)
$$

This approximation becomes better as $a \rightarrow 0$ and suggests that

$$
\begin{equation*}
\operatorname{div} \mathbf{F}\left(P_{0}\right)=\lim _{a \rightarrow 0} \frac{1}{V\left(\boldsymbol{B}_{a}\right)} \iint_{S_{a}} \mathbf{F} \cdot d \mathbf{S} \tag{8}
\end{equation*}
$$

Equation 8 says that $\operatorname{div} \mathbf{F}\left(P_{0}\right)$ is the net rate of outward flux per unit volume at P_{0}. (This is the reason for the name divergence.) If $\operatorname{div} \mathbf{F}(P)>0$, the net flow is outward near P and P is called a source. If $\operatorname{div} \mathbf{F}(P)<0$, the net flow is inward near P and P is called a sink.

For the vector field in Figure 4, it appears that the vectors that end near P_{1} are shorter than the vectors that start near P_{1}. Thus the net flow is outward near P_{1}, so $\operatorname{div} \mathbf{F}\left(P_{1}\right)>0$ and P_{1} is a source. Near P_{2}, on the other hand, the incoming arrows are longer than the outgoing arrows. Here the net flow is inward, so $\operatorname{div} \mathbf{F}\left(P_{2}\right)<0$ and P_{2} is a sink. We can use the formula for \mathbf{F} to confirm this impression. Since $\mathbf{F}=x^{2} \mathbf{i}+y^{2} \mathbf{j}$, we have $\operatorname{div} \mathbf{F}=2 x+2 y$, which is positive when $y>-x$. So the points above the line $y=-x$ are sources and those below are sinks.

16.9 Exercises

1-4 Verify that the Divergence Theorem is true for the vector field \mathbf{F} on the region E.

1. $\mathbf{F}(x, y, z)=3 x \mathbf{i}+x y \mathbf{j}+2 x z \mathbf{k}$,
E is the cube bounded by the planes $x=0, x=1, y=0$,
$y=1, z=0$, and $z=1$
2. $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+x y \mathbf{j}+z \mathbf{k}$,
E is the solid bounded by the paraboloid $z=4-x^{2}-y^{2}$
and the $x y$-plane
3. $\mathbf{F}(x, y, z)=\langle z, y, x\rangle$,
E is the solid ball $x^{2}+y^{2}+z^{2} \leqslant 16$
4. $\mathbf{F}(x, y, z)=\left\langle x^{2},-y, z\right\rangle$,
E is the solid cylinder $y^{2}+z^{2} \leqslant 9,0 \leqslant x \leqslant 2$

5-15 Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$; that is, calculate the flux of \mathbf{F} across S.
5. $\mathbf{F}(x, y, z)=x y e^{2} \mathbf{i}+x y^{2} z^{3} \mathbf{j}-y e^{2} \mathbf{k}$,
S is the surface of the box bounded by the coordinate planes and the planes $x=3, y=2$, and $z=1$
6. $\mathbf{F}(x, y, z)=x^{2} y z \mathbf{i}+x y^{2} z \mathbf{j}+x y z^{2} \mathbf{k}$,
S is the surface of the box enclosed by the planes $x=0$,
$x=a, y=0, y=b, z=0$, and $z=c$, where a, b, and c are positive numbers
7. $\mathbf{F}(x, y, z)=3 x y^{2} \mathbf{i}+x e^{z} \mathbf{j}+z^{3} \mathbf{k}$,
S is the surface of the solid bounded by the cylinder $y^{2}+z^{2}=1$ and the planes $x=-1$ and $x=2$
8. $\mathbf{F}(x, y, z)=\left(x^{3}+y^{3}\right) \mathbf{i}+\left(y^{3}+z^{3}\right) \mathbf{j}+\left(z^{3}+x^{3}\right) \mathbf{k}$,
S is the sphere with center the origin and radius 2
9. $\mathbf{F}(x, y, z)=x^{2} \sin y \mathbf{i}+x \cos y \mathbf{j}-x z \sin y \mathbf{k}$, S is the "fat sphere" $x^{8}+y^{8}+z^{8}=8$
10. $\mathbf{F}(x, y, z)=z \mathbf{i}+y \mathbf{j}+z x \mathbf{k}$,
S is the surface of the tetrahedron enclosed by the coordinate planes and the plane

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

where a, b, and c are positive numbers
11. $\mathbf{F}(x, y, z)=\left(\cos z+x y^{2}\right) \mathbf{i}+x e^{-z} \mathbf{j}+\left(\sin y+x^{2} z\right) \mathbf{k}$, S is the surface of the solid bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=4$
12. $\mathbf{F}(x, y, z)=x^{4} \mathbf{i}-x^{3} z^{2} \mathbf{j}+4 x y^{2} z \mathbf{k}$,
S is the surface of the solid bounded by the cylinder
$x^{2}+y^{2}=1$ and the planes $z=x+2$ and $z=0$
13. $\mathbf{F}=|\mathbf{r}| \mathbf{r}$, where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$,
S consists of the hemisphere $z=\sqrt{1-x^{2}-y^{2}}$ and the disk $x^{2}+y^{2} \leqslant 1$ in the $x y$-plane

16.9 The Divergence Theorem

1. $\operatorname{div} \mathbf{F}=3+x+2 x=3+3 x$, so
$\iiint_{E} \operatorname{div} \mathbf{F} d V=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(3 x+3) d x d y d z=\frac{9}{2}$ (notice the triple integral is three times the volume of the cube plus three times \bar{x}).

To compute $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, on
$S_{1}: \mathbf{n}=\mathbf{i}, \mathbf{F}=3 \mathbf{i}+y \mathbf{j}+2 z \mathbf{k}$, and $\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{1}} 3 d S=3 ;$

$S_{2}: \mathbf{F}=3 x \mathbf{i}+x \mathbf{j}+2 x z \mathbf{k}, \mathbf{n}=\mathbf{j}$ and $\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{2}} x d S=\frac{1}{2}$;
$S_{3}: \mathbf{F}=3 x \mathbf{i}+x y \mathbf{j}+2 x \mathbf{k}, \mathbf{n}=\mathbf{k}$ and $\iint_{S_{3}} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{3}} 2 x d S=1 ;$
$S_{4}: \mathbf{F}=\mathbf{0}, \iint_{S_{4}} \mathbf{F} \cdot d \mathbf{S}=0 ; S_{5}: \mathbf{F}=3 x \mathbf{i}+2 x \mathbf{k}, \mathbf{n}=-\mathbf{j}$ and $\iint_{S_{5}} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{5}} 0 d S=0$;
$S_{6}: \mathbf{F}=3 x \mathbf{i}+x y \mathbf{j}, \mathbf{n}=-\mathbf{k}$ and $\iint_{S_{6}} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{6}} 0 d S=0$. Thus $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\frac{9}{2}$.
2. $\operatorname{div} \mathbf{F}=2 x+x+1=3 x+1$ so

$$
\begin{aligned}
\iiint_{E} \operatorname{div} \mathbf{F} d V & =\iiint_{E}(3 x+1) d V=\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{4-r^{2}}(3 r \cos \theta+1) r d z d r d \theta \\
& =\int_{0}^{2} \int_{0}^{2 \pi} r(3 r \cos \theta+1)\left(4-r^{2}\right) d \theta d r \\
& =\int_{0}^{2 \pi} r\left(4-r^{2}\right)[3 r \sin \theta+\theta]_{\theta=0}^{\theta=2 \pi} d r \\
& =2 \pi \int_{0}^{2}\left(4 r-r^{3}\right) d r=2 \pi\left[2 r^{2}-\frac{1}{4} r^{4}\right]_{0}^{2} \\
& =2 \pi(8-4)=8 \pi
\end{aligned}
$$

On S_{1} : The surface is $z=4-x^{2}-y^{2}, x^{2}+y^{2} \leq 4$, with upward orientation, and $\mathbf{F}=x^{2} \mathbf{i}+x y \mathbf{j}+\left(4-x^{2}-y^{2}\right) \mathbf{k}$. Then

$$
\begin{aligned}
\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S} & =\iint_{D}\left[-\left(x^{2}\right)(-2 x)-(x y)(-2 y)+\left(4-x^{2}-y^{2}\right)\right] d A \\
& =\iint_{D}\left[2 x\left(x^{2}+y^{2}\right)+4-\left(x^{2}+y^{2}\right)\right] d A=\int_{0}^{2 \pi} \int_{0}^{2}\left(2 r \cos \theta \cdot r^{2}+4-r^{2}\right) r d r d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{2}{5} r^{5} \cos \theta+2 r^{2}-\frac{1}{4} r^{4}\right]_{r=0}^{r=2} d \theta=\int_{0}^{2 \pi}\left(\frac{64}{5} \cos \theta+4\right) d \theta=\left[\frac{64}{5} \sin \theta+4 \theta\right]_{0}^{2 \pi}=8 \pi
\end{aligned}
$$

On S_{2} : The surface is $z=0$ with downward orientation, so $\mathbf{F}=x^{2} \mathbf{i}+x y \mathbf{j}, \mathbf{n}=-\mathbf{k}$ and $\iint_{S_{2}} \mathbf{F} \cdot \mathbf{n} d S=\iint_{S_{2}} 0 d S=0$.
Thus $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}+\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}=8 \pi$.
3. $\operatorname{div} \mathbf{F}=0+1+0=1$, so $\iiint_{E} \operatorname{div} \mathbf{F} d V=\iiint_{E} 1 d V=V(E)=\frac{4}{3} \pi \cdot 4^{3}=\frac{256}{3} \pi$. S is a sphere of radius 4 centered at the origin which can be parametrized by $\mathbf{r}(\phi, \theta)=\langle 4 \sin \phi \cos \theta, 4 \sin \phi \sin \theta, 4 \cos \phi\rangle, 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi$ (similar to Example 16.6.10). Then

$$
\begin{aligned}
\mathbf{r}_{\phi} \times \mathbf{r}_{\theta} & =\langle 4 \cos \phi \cos \theta, 4 \cos \phi \sin \theta,-4 \sin \phi\rangle \times\langle-4 \sin \phi \sin \theta, 4 \sin \phi \cos \theta, 0\rangle \\
& =\left\langle 16 \sin ^{2} \phi \cos \theta, 16 \sin ^{2} \phi \sin \theta, 16 \cos \phi \sin \phi\right\rangle
\end{aligned}
$$

and $\mathbf{F}(\mathbf{r}(\phi, \theta))=\langle 4 \cos \phi, 4 \sin \phi \sin \theta, 4 \sin \phi \cos \theta\rangle$. Thus $\mathbf{F} \cdot\left(\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right)=64 \cos \phi \sin ^{2} \phi \cos \theta+64 \sin ^{3} \phi \sin ^{2} \theta+64 \cos \phi \sin ^{2} \phi \cos \theta=128 \cos \phi \sin ^{2} \phi \cos \theta+64 \sin ^{3} \phi \sin ^{2} \theta$ and

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{D} \mathbf{F} \cdot\left(\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right) d A=\int_{0}^{2 \pi} \int_{0}^{\pi}\left(128 \cos \phi \sin ^{2} \phi \cos \theta+64 \sin ^{3} \phi \sin ^{2} \theta\right) d \phi d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{128}{3} \sin ^{3} \phi \cos \theta+64\left(-\frac{1}{3}\left(2+\sin ^{2} \phi\right) \cos \phi\right) \sin ^{2} \theta\right]_{\phi=0}^{\phi=\pi} d \theta \\
& =\int_{0}^{2 \pi} \frac{256}{3} \sin ^{2} \theta d \theta=\frac{256}{3}\left[\frac{1}{2} \theta-\frac{1}{4} \sin 2 \theta\right]_{0}^{2 \pi}=\frac{256}{3} \pi
\end{aligned}
$$

4. $\operatorname{div} \mathbf{F}=2 x-1+1=2 x$, so

$$
\iiint_{E} \operatorname{div} \mathbf{F} d V=\iint_{y^{2}+z^{2} \leq 9}\left[\int_{0}^{2} 2 x d x\right] d A=\iint_{y^{2}+z^{2} \leq 9} 4 d A=4(\text { area of circle })=4\left(\pi \cdot 3^{2}\right)=36 \pi
$$

Let S_{1} be the front of the cylinder (in the plane $x=2$), S_{2} the back (in the $y z$-plane), and S_{3} the lateral surface of the cylinder.
S_{1} is the disk $x=2, y^{2}+z^{2} \leq 9$. A unit normal vector is $\mathbf{n}=\langle 1,0,0\rangle$ and $\mathbf{F}=\langle 4,-y, z\rangle$ on S_{1}, so
$\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{1}} \mathbf{F} \cdot \mathbf{n} d S=\iint_{S_{1}} 4 d S=4\left(\right.$ surface area of $\left.S_{1}\right)=4\left(\pi \cdot 3^{2}\right)=36 \pi . S_{2}$ is the disk $x=0, y^{2}+z^{2} \leq 9$.
Here $\mathbf{n}=\langle-1,0,0\rangle$ and $\mathbf{F}=\langle 0,-y, z\rangle$, so $\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{2}} \mathbf{F} \cdot \mathbf{n} d S=\iint_{S_{2}} 0 d S=0$.
S_{3} can be parametrized by $\mathbf{r}(x, \theta)=\langle x, 3 \cos \theta, 3 \sin \theta\rangle, 0 \leq x \leq 2,0 \leq \theta \leq 2 \pi$. Then
$\mathbf{r}_{x} \times \mathbf{r}_{\theta}=\langle 1,0,0\rangle \times\langle 0,-3 \sin \theta, 3 \cos \theta\rangle=\langle 0,-3 \cos \theta,-3 \sin \theta\rangle$. For the outward (positive) orientation we use $-\left(\mathbf{r}_{x} \times \mathbf{r}_{\theta}\right)$ and $\mathbf{F}(\mathbf{r}(x, \theta))=\left\langle x^{2},-3 \cos \theta, 3 \sin \theta\right\rangle$, so

$$
\begin{aligned}
\iint_{S_{3}} \mathbf{F} \cdot d \mathbf{S} & =\iint_{D} \mathbf{F} \cdot\left(-\left(\mathbf{r}_{x} \times \mathbf{r}_{\theta}\right)\right) d A=\int_{0}^{2} \int_{0}^{2 \pi}\left(0-9 \cos ^{2} \theta+9 \sin ^{2} \theta\right) d \theta d x \\
& =-9 \int_{0}^{2} d x \int_{0}^{2 \pi} \cos 2 \theta d \theta=-9(2)\left[\frac{1}{2} \sin 2 \theta\right]_{0}^{2 \pi}=0
\end{aligned}
$$

Thus $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=36 \pi+0+0=36 \pi$.
5. $\operatorname{div} \mathbf{F}=\frac{\partial}{\partial x}\left(x y e^{z}\right)+\frac{\partial}{\partial y}\left(x y^{2} z^{3}\right)+\frac{\partial}{\partial z}\left(-y e^{z}\right)=y e^{z}+2 x y z^{3}-y e^{z}=2 x y z^{3}$, so by the Divergence Theorem,

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iiint_{E} \operatorname{div} \mathbf{F} d V=\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} 2 x y z^{3} d z d y d x=2 \int_{0}^{3} x d x \int_{0}^{2} y d y \int_{0}^{1} z^{3} d z \\
& =2\left[\frac{1}{2} x^{2}\right]_{0}^{3}\left[\frac{1}{2} y^{2}\right]_{0}^{2}\left[\frac{1}{4} z^{4}\right]_{0}^{1}=2\left(\frac{9}{2}\right)(2)\left(\frac{1}{4}\right)=\frac{9}{2}
\end{aligned}
$$

6. $\operatorname{div} \mathbf{F}=\frac{\partial}{\partial x}\left(x^{2} y z\right)+\frac{\partial}{\partial y}\left(x y^{2} z\right)+\frac{\partial}{\partial z}\left(x y z^{2}\right)=2 x y z+2 x y z+2 x y z=6 x y z$, so by the Divergence Theorem,

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iiint_{E} \operatorname{div} \mathbf{F} d V=\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} 6 x y z d z d y d x=6 \int_{0}^{a} x d x \int_{0}^{b} y d y \int_{0}^{c} z d z \\
& =6\left[\frac{1}{2} x^{2}\right]_{0}^{a}\left[\frac{1}{2} y^{2}\right]_{0}^{b}\left[\frac{1}{2} z^{2}\right]_{0}^{c}=6\left(\frac{1}{2} a^{2}\right)\left(\frac{1}{2} b^{2}\right)\left(\frac{1}{2} c^{2}\right)=\frac{3}{4} a^{2} b^{2} c^{2}
\end{aligned}
$$

7. $\operatorname{div} \mathbf{F}=3 y^{2}+0+3 z^{2}$, so using cylindrical coordinates with $y=r \cos \theta, z=r \sin \theta, x=x$ we have

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iiint_{E}\left(3 y^{2}+3 z^{2}\right) d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{-1}^{2}\left(3 r^{2} \cos ^{2} \theta+3 r^{2} \sin ^{2} \theta\right) r d x d r d \theta \\
& =3 \int_{0}^{2 \pi} d \theta \int_{0}^{1} r^{3} d r \int_{-1}^{2} d x=3(2 \pi)\left(\frac{1}{4}\right)(3)=\frac{9 \pi}{2}
\end{aligned}
$$

8. $\operatorname{div} \mathbf{F}=3 x^{2}+3 y^{2}+3 z^{2}$, so by the Divergence Theorem,

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iiint_{E} 3\left(x^{2}+y^{2}+z^{2}\right) d V=\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{2} 3 \rho^{2} \cdot \rho^{2} \sin \phi d \rho d \theta d \phi=3 \int_{0}^{\pi} \sin \phi d \phi \int_{0}^{2 \pi} d \theta \int_{0}^{2} \rho^{4} d \rho \\
& =3[-\cos \phi]_{0}^{\pi}[\theta]_{0}^{2 \pi}\left[\frac{1}{5} \rho^{5}\right]_{0}^{2}=3(2)(2 \pi)\left(\frac{32}{5}\right)=\frac{384}{5} \pi
\end{aligned}
$$

9. $\operatorname{div} \mathbf{F}=2 x \sin y-x \sin y-x \sin y=0$, so by the Divergence Theorem, $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} 0 d V=0$.
o. Worked out Solutions for all Assessment Tools

${ }_{0.1 .1}$ Solution for Quiz I

Name Meriam MKadmi, 83776
Calculus III MTH 203 Fall 2021, 1-1

Quiz I, MTH 203, Fall 2021
Ayman Badawi

QUESTION 1. Convince me that L_{1}
$2 w, y=2 w-5, z=2 w-6(w \in R)$
(1) First condition: $D_{1} \cdot D_{2}=O$.

$$
\begin{aligned}
& D_{1}=\langle 3,1,-4\rangle \text { and } D_{2}=\langle 2,2,2\rangle \\
& D_{1} \cdot D_{2}=\langle 3,1,-4\rangle \cdot\langle 2,2,2\rangle \\
&=3(2)+1(2)-4(2)=0
\end{aligned}
$$

(2) Second condition: L_{1} and L_{2} intersect
check if x in $L_{1}=x$ in L_{2}

$$
y \text { in } L_{1}=y \text { in } L_{2}
$$

z in $L_{1}=z$ in L_{2}.

$$
\begin{aligned}
x: & 3 t+1 \\
y: & t-2 w \\
z: & -4 t+2 \xrightarrow{\longrightarrow} \stackrel{?}{=} 2 w-6 \\
& -2=-2
\end{aligned}
$$

equation for z is satisfied by t and w.
Both conditions are met, therefore,

$$
L_{1} \perp L_{2}
$$

QUESTION 2. Is the line $L_{1}: x=3 t+1, y=t-2, z=-4 t+2(t \in R)$ parallel to $L_{2}: x=6 w-5, y=$ $2 w-4, z=-8 w+11(w \in R)$? EXPLAIN WHY YES or WHY NO.
(1) First condition: $D_{1}=c D_{2}$

$$
D_{1}=\langle 3,1,-4\rangle \text { and } D_{2}=\langle 6,2,-8\rangle
$$

$$
\left.\begin{array}{rl}
3 & =6 c \longrightarrow c \\
1 & =2 c \longrightarrow 1 / 2 \\
-4 & =-8 c \rightarrow c=1 / 2 \\
c & =1 / 2
\end{array}\right\} \begin{aligned}
& c=1 / 2 \\
& \text { satisfies } \\
& \text { all of them. }
\end{aligned}
$$

(2) Second condition: L_{1} does not intersect L_{2}. Let's see if the point $(1,-2,2)$, which lies on L_{1}, does not lie on L_{2}.

$$
\left.\begin{array}{rl}
L_{2}: 1 & =6 w-5 \longrightarrow w=1 \\
-2 & =2 w-4 \longrightarrow w=1 \\
2 & =-8 w+11 \longrightarrow w=9 / 8
\end{array}\right\} \begin{gathered}
\text { not satisfied } \\
\text { by the } \\
\text { same } w .
\end{gathered}
$$

Since the point $(1,-2,2)$ does not lie on L_{2}, we can confirm that they are not the some line.
Both conditions are met, therefore

$$
L_{1} \| L_{2} \text {. }
$$

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
0.12 Solution for Quiz II

Quiz II , MTH 203, Fall 2021
 Ayman Badawi

QUESTION 1. Does the line $L: x=-t+2, y=2 t+6, z=3 t-2(t \in R)$ intersect the plane $P: x+y+2 z=25$. If yes, then find the point of intersection.

QUESTION 2. Can we draw the vector $v=<2,-4,-3>$ inside the plane $P: x+y-2 z=12$? explain

QUESTION 3. Does the plane $P_{1}: x+2 y+z=5$ intersect the plane $P_{2}:-x-y+3 z=-2$? If yes, the find the parametric equations of line of intersection.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
0.13 Solution for Quiz III

Quiz III , MTH 203, Fall 2021

Ayman Badawi

QUESTION 1. Find all critical points of the function $f(x, y)=y x^{2}-2 x^{2}-y^{2}$. Then classify each critical point as local Max/Min or Saddle or neither.

Solution:
F_x $=2 \mathrm{xy}-4 \mathrm{x}=0,2 \mathrm{x}(\mathrm{y}-2)=0, \mathrm{y}=2$ or $\mathrm{x}=0$ (1)
$F_{-} y=x^{\wedge} 2-2 y=0 . \quad y=x^{\wedge} 2 / 2 .(2)$
assume $\mathrm{x}=0$, then by $(\mathrm{Eq}(2)$, we have $\mathrm{y}=0,(0,0)$
In eq(2) we set $y=2$, solve for $x .2=x^{\wedge} 2 / 2,4=x^{\wedge} 2, x=2,-2$. Hence we get $(2,2),(-2,2)$
Critical points: $(0,0),(2,2)$ and $(-2,2)$
$\mathrm{f}_{-} \mathrm{xx}=2 \mathrm{y}-4, \mathrm{f} _\mathrm{yy}=-2, \mathrm{f} _\mathrm{xy}=2 \mathrm{x}$
$(0,0): \operatorname{fxx}(0,0)=-4, f y y(0,0)=-2, f x y(0,0)=0$.
$\mathrm{D}=\mathrm{fxx}(0,0) \mathrm{fyy}(0,0)-\mathrm{fxy}(0,0)^{\wedge} 2=8, \mathrm{f} _\mathrm{xx}(0,0)<0$, we have local max at $(0,0)$
$(2,2): \operatorname{fxx}(2,2)=0, f y y(2,2)=-2, f x y(2,2)=4 . D=-16<0$, saddle point at $(2,2)$
$(-2,2): \mathrm{fxx}(-2,2)=0, \mathrm{fyy}(-2,2)=-2, \operatorname{fxy}(-2,2)=-4$. $\mathrm{D}=-16<0$, saddle point at $(-2$, 2)

Faculty information

Meriam Mkadmi

QUESTION 1. Let $f(x, y)=y e^{(x-4)}+x \sqrt{y}+2 x$.
(i) Let $a=f(4,1)$. Find a
(ii) Find f_{x} and f_{y}.
(iii) Let P be the tangent plane to $f(x, y)$ at the point $(4,1, a)$. Let N be a vector that is perpendicular to P. Find N.
(iv) Find the equation of P, where P is as in (iii).
(v) Use the concept of the tangent plane to approximate $f(4.2,0.8)$
i) $f(4,1)=e^{0}+4+2(4)=13$
ii) $f_{x}=y e^{x-4}+\sqrt{y}+2$
G) $f_{y}=e^{x-4}+\frac{1}{2} x y^{-\frac{1}{2}}=e^{x-4}+\frac{x}{2 \sqrt{y}}$
iii)

$$
\begin{aligned}
& N=\left\langle f_{x}(4,1), f_{y}(4,1),-1\right\rangle \\
& N=\langle 4,3,-1\rangle
\end{aligned}
$$

iv) $M=\overrightarrow{P, A}=\langle x-4, y-1, z-13\rangle$

$$
N \cdot M=0
$$

Equation of P :

$$
4(x-4)+3(y-1)-(z-13)=0
$$

v) Rearrange to make z the subject

$$
\begin{aligned}
& z=4(x-4)+3(y-1)+13 \\
& \begin{aligned}
L(x, y) & =4(x-4)+3(y-1)+13
\end{aligned} \\
& \begin{aligned}
L(4.2,0.8) & =4(4.2-4)+3(0.8-1)+13 \\
& =13.2 \approx f(4.2,0.8) .
\end{aligned}
\end{aligned}
$$

QUESTION 2. A solid object has a a triangular base that is bounded by $y=x$ and $y=-x$ (see PICTURE). Note that $-2 \leq x \leq 2$ and $0 \leq y \leq 2$. The height is determined by the function $f(x, y)=e^{\sqrt{4-y^{2}}}$. Find the volume of such object.

$y=x$ A solid object has a triangular base in the xy-plane as in picture. Note $\mathrm{A}=$ $(-2,2), B=(2,2)$, and $C=(0,0) . C$, B lie on the line $y=x, C$ and A lie on $y=-x$.

$$
0 \leqslant y \leqslant 2
$$

$$
0 \leqslant x \leqslant y
$$

$$
V=2\left[\int_{y=0}^{y=2} \int_{x=0}^{x=y} e^{\sqrt{4-y^{2}}} d x d y\right]
$$

First evaluate inner integral:

$$
\int_{x=0}^{x=y} e^{\sqrt{4-y^{2}}} d x=\left.x e^{\sqrt{4-y^{2}}}\right|_{x=0} ^{x=y}=y e^{\sqrt{4-y^{2}}}
$$

Then evaluate outer integral:

$$
\int_{y=0}^{y=2} y e^{\sqrt{4-y^{2}}} d y \quad \text { use substitution } \quad u=4-y^{2} d u=-2 y d y
$$

$$
4 d y=-\frac{d u}{2 y}
$$

Don't forget to multiply by 2 .

$$
-\quad-
$$

0.1.5 Solution for Quiz V

Meriam Mkadmi

QUESTION 1. See the below picture. A force $F(x, y)=<-y, x>$ is acting on a particle in order to move it from the point A to the point B along the ellipse $x^{2}+4 y^{2}=16$. Find the work done by the force $F(x, y)$. [Hint: you do not need to find $A, B]$.

Parametric Equations:

$$
\left.\begin{array}{rl}
x & =4 \cos (t) \quad 3 \quad \frac{3 \pi}{2} \leqslant t \leqslant 2 \pi \\
y & =2 \sin (t)
\end{array}\right\} \begin{aligned}
d x & =-4 \sin t d t \\
d y & =2 \cos t d t \\
d r & =\langle d x, d y\rangle \\
& =\langle-4 \sin t d t, 2 \cos t d t\rangle \\
\text { Work } & =\int_{\frac{3 \pi}{2}}^{2 \pi}\langle-2 \sin t, 4 \cos t\rangle \cdot\langle-4 \sin t d t, 2 \cos t d t\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\frac{3 \pi}{2}}^{2 \pi}\left(8 \sin ^{2} t d t+8 \cos ^{2} t d t\right) \\
& =\int_{\frac{3 \pi}{2}}^{2 \pi} 8 d t=\left.8 t\right|_{\frac{3 \pi}{2}} ^{2 \pi}=[16 \pi-12 \pi] \\
& =4 \pi
\end{aligned}
$$

QUESTION 2. The height of a curtain is determine by $f(x, y)=e^{2 x}+5 y^{2}$ defined over the curve $y=e^{x}, 0 \leq x \leq$ $\ln (5)$. Find the surface area of the curtain.

Surface Area $=$ Height \times Arc Length

$$
\begin{aligned}
\frac{d y}{d x} & =e^{x} \\
S . A . & =\int_{0}^{\ln 5}\left(e^{2 x}+5 e^{2 x}\right) \sqrt{1+e^{2 x}} d x \\
& =\int_{0}^{\ln 5} 6 e^{2 x} \sqrt{1+e^{2 x}} d x
\end{aligned}
$$

Use substitution: $\quad u=1+e^{2 x} \quad d u=2 e^{2 x} d x$

$$
\rightarrow d x=\frac{1}{2 e^{2 x}} d u
$$

$$
\begin{aligned}
& =\int_{2}^{26} 6 e^{2 x} \sqrt{u} \cdot \frac{1}{2 e^{2 x}} d u \\
& =\int_{2}^{26} 3 \sqrt{u} d u=\left.2 u^{3 / 2}\right|_{2} ^{26} \\
& =2(26)^{3 / 2}-2(2)^{3 / 2}=259.492 \ldots
\end{aligned}
$$

QUESTION 3. Evaluate the integral $\int_{C}(1+2 y) d y$, where the curve C is $y=e^{x^{2}}, 0 \leq x \leq 1$
Rewrite everything in terms of x.

$$
\begin{aligned}
& y=e^{x^{2}} \longrightarrow d y=2 x e^{x^{2}} d x \\
& \int_{0}^{1}\left(1+2 e^{x^{2}}\right) 2 x e^{x^{2}} d x
\end{aligned}
$$

Use substitution: $u=1+2 e^{x^{2}}$

$$
\begin{aligned}
& d u=4 x e^{x^{2}} d x \\
& \Rightarrow d x=\frac{1}{4 x e^{x^{2}}} d u
\end{aligned}
$$

$$
\begin{aligned}
& \int_{3}^{1+2 e}(u) 2 x e^{x^{2}} \cdot \frac{1}{4 x e^{x^{2}}} d u \\
& =\int_{3}^{1+2 e} \frac{1}{2} u d u=\left.\frac{1}{4} u^{2}\right|_{3} ^{1+2 e} \\
& =\frac{1}{4}(1+2 e)^{2}-\frac{1}{4}(3)^{2}=8.1073 \ldots
\end{aligned}
$$

${ }_{0.1 .6}$ Solution for Quiz VI

Quiz VI, MTH 203, Fall 2021

Ayman Badawi

SHOW THE WORK, SUBMIT by 2:35pm

QUESTION 1. See the below picture. A force $F(x, y)=<y e^{y x}-2 x, x e^{y x}+4 y^{3}>$ is acting on a particle in order to move it from the point $A=(-2,0)$ to the point $e=(0,-4)$ along the curve C that consists of C_{1} part of the circle $x^{2}+y^{2}=4, C_{2}$ the line segment between B and c, C_{3} the line segment between c and d, and C_{4} the line segment between d and e . Find the work done by the force $F(x, y)$.

Solution: $f_{x}=y e^{x y}-2 x$, hence $f_{x y}=e^{x y}+x y e^{x y} . f_{y}=x e^{x y}+4 y^{3}$, thus $f_{y x}=e^{x y}+x y e^{x y}$. Hence $f_{x y}=f_{y x}$ and therefore F is conservative. So, the line integral does not depend on the path. So the answer is K (terminal point) $-K$ (initial point), where $K_{x}=f_{x}$ and $K_{y}=f_{y}$. To find $K(x, y)$. We do the following (as in class):

$$
\begin{aligned}
& \int f_{x} d x=\int y e^{x y}-2 x d x=e^{x y}-x^{2} \\
& \int f_{y} d y=\int x e^{x y}+4 y^{3} d y=e^{x y}+y^{4}
\end{aligned}
$$

Now K($\mathbf{x}, \mathbf{y})=$ all terms of $\int f x d x+\boldsymbol{t h e}$ terms in $\int f_{y} d y$ that are MISSING in $\int f_{x} d x$
Hence $K(x, y)=e^{x y}-x^{2}+y^{4}$.
Thus the work $=\int_{C} F . d r=K(0,-4)-K(-2,0)=e^{0}+0+256-\left(e^{0}-4+0\right)=260$

QUESTION 2. See the below picture. A force $F(x, y)=<-2 y, \frac{2}{3} x \sqrt{y^{2}+9}>$ is acting on a particle in order to move it from the point $A=(0.0)$ then back to the same point A along the curve C that consists of C_{1} part of the the line $y=0.5 x$ between A and B, C_{2} part of the line $y=4$ between B and C, and C_{3} part of the y -axis between C and A. Use Green's Theorem to find the work done by the force $F(x, y)$. [Hint: Is dxdy or dydx easier?]

Solution: By staring, $\iint---d x d y$ is easier. Ok, we use Green's Theorem:
$f_{x}=-2 y$, so $f_{x y}=-2$. $f_{y}=\frac{2}{3} x \sqrt{y^{2}+9}$, so $f_{y x}=\frac{2}{3} \sqrt{y^{2}+9}$. Since C is closed simple arc, Green'theorem says $\int_{C} F . d r=\int_{C_{1}} F . d r+\int_{C_{2}} F . d r+\int_{C_{3}} F . d r=\int_{y=0}^{y=4} \int_{x=0}^{x=2 y} f_{y x}-f_{x y} d x d y$.

$$
\int_{y=0}^{y=4} \int_{x=0}^{x=2 y} \frac{2}{3} \sqrt{y^{2}+9}+2 d x d y
$$

$\int_{x=0}^{x=2 y} \frac{2}{3} \sqrt{y^{2}+9}+2 d x=\int_{x=0}^{x=2 y} \frac{2}{3} \sqrt{y^{2}+9} d x+\int_{x=0}^{x=2 y} 2 d x=\frac{2}{3} x \sqrt{y^{2}+9}+\left.2 x\right|_{x=0} ^{x=2 y}=\frac{4 y}{3} \sqrt{y^{2}+9}+4 y$
Now $\int_{y=0}^{y=4} \frac{4 y}{3} \sqrt{y^{2}+9}+4 y d y=\int_{y=0}^{y=4} \frac{4 y}{3} \sqrt{y^{2}+9}+\int_{y=0}^{y=4} 4 y d y$
For $\int_{y=0}^{y=4} \frac{4 y}{3} \sqrt{y^{2}+9} d y$ we use substitution

Let $u=y^{2}+9$. Then $d u=2 y d u$ and u is between 9 and 25. Hence we have $\int_{u=9}^{u=25} \frac{2}{3} u^{0.5} d u=\left.\frac{4}{9} u^{\frac{3}{2}}\right|_{u=9} ^{u=25}=$ $\frac{4}{9}(125-27)=\frac{392}{9}$

Also, $\int_{y=0}^{y=4} 4 y d y=\left.2 y^{2}\right|_{y=0} ^{y=4}=32$.
Thus the answer is $\frac{392}{9}+32=\frac{392+288}{9}=\frac{680}{9}$
QUESTION 3. Find the surface area of the part of $f(x, y)=\frac{x^{2}}{2 \sqrt{2}}+\frac{y^{2}}{2 \sqrt{2}}$ defined over the region in the first quadrant of the xy-plane bounded by $x^{2}+y^{2} \leq 4$ and $x^{2}+y^{2} \geq 1$, see picture.

Solution: The region is between the two circles (as in the picture), so POLAR is recommended. By staring at the region, we realize that $1 \leq r \leq 2$ and $0 \leq \theta \leq \pi / 2$ Let $f(x, y)=z=\frac{x^{2}}{2 \sqrt{2}}+\frac{y^{2}}{2 \sqrt{2}}$.

Surface Area $=\int_{\theta=0}^{\theta=\pi / 2} \int_{r=1}^{r=2} \sqrt{1+f_{x}^{2}+f_{y}^{2}} r d r d \theta$.
Now we must write $\sqrt{1+f_{x}^{2}+f_{y}^{2}}$ in terms of r and θ (since the integration is in terms of $d r d \theta$)
Thus $\sqrt{1+f_{x}^{2}+f_{y}^{2}}=\sqrt{1+0.5 x^{2}+0.5 y^{2}}=\sqrt{1+0.5\left(x^{2}+y^{2}\right)}=\sqrt{1+0.5 r^{2}}$ (note that every point (x, y) between the two circles satisfies $x^{2}+y^{2}=r^{2}$, where $1 \leq r \leq 2$)

Thus the surface area $=\int_{\theta=0}^{\theta=\pi / 2} \int_{r=1}^{r=2} \sqrt{1+0.5 r^{2}} r d r d \theta$.
For $\int_{r=1}^{r=2} \sqrt{1+0.5 r^{2}} r d r d$ we use substitution. Let $u=1+0.5 r^{2}$. Hence $d u=r d r$ and u is between 1.5 and 3. Thus $\int_{u=1.5}^{u=3} u^{0.5} d u=\left.\frac{2}{3} u^{\frac{3}{2}}\right|_{u=1.5} ^{u=3}=\frac{2}{3}\left(3^{1.5}-1.5^{1.5}\right)$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Midterm 1
Question 1:

$$
\begin{aligned}
& \text { Height }=\frac{36 y}{9 x^{4}+1}=\frac{36 x^{3}}{9 x^{4}+1} \\
& \begin{aligned}
\text { S.A. } & =\int_{0}^{1} \frac{36 x^{3}}{9 x^{4}+1} \cdot \sqrt{1+\left(3 x^{2}\right)^{2}} d x \\
& =\int_{0}^{1} \frac{36 x^{3} \sqrt{1+9 x^{4}}}{9 x^{4}+1} d x \\
& =\int_{0}^{1} \frac{36 x^{3}}{\sqrt{9 x^{4}+1}} d x \\
& u=9 x^{4}+1 \quad d u=36 x^{3} d x \\
x=0 & \Rightarrow u=1 \quad d x=\frac{1}{36 x^{3}} d u \\
x \geqslant 1 & >M=10
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{10} \frac{1}{\sqrt{u}} d u=\int_{p}^{10} u^{-\frac{1}{2}} d u \\
& =\left.2 \sqrt{u}\right|_{q} ^{10}=2 \sqrt{10}-Q \\
& =2 \sqrt{10} \text { units }^{2} \\
& \text { or } A .32 \text { units }^{2}
\end{aligned}
$$

Question 2:

$$
V=\int_{0}^{1} \int_{0}^{x}(x \sqrt{y+1}) d y d x
$$

First evaluate inner integral (dy)

$$
\begin{aligned}
& \int_{0}^{x}(x \sqrt{y+1}) d y=\int_{0}^{x}\left(x(y+1)^{1 / 2}\right) d y \\
& =\left.\frac{x(y+1)^{3 / 2}}{3 / 2}\right|_{0} ^{x}=\left[\frac{2 x(x+1)^{3 / 2}}{3}\right]-\left[\frac{2 x}{3}\right] \\
& =\frac{2 x(x+1)^{3 / 2}-2 x}{3}
\end{aligned}
$$

Now evaluate outer interval (dx)

$$
\begin{aligned}
& \int_{0}^{1}\left(\frac{2 x(x+1)^{3 / 2}-2 x}{3}\right) d x \\
& =\int_{0}^{1} \frac{2 x(x+1)^{3 / 2}}{3} d x-\int_{0}^{1} \frac{2 x}{3} d x \\
& =\int_{0}^{1} \frac{2 x(x+1)^{3 / 2}}{3} d x-\left[\frac{x^{2}}{3}\right]_{0}^{1} \\
& =\int_{0}^{1} \frac{2 x(x+1)^{3 / 2}}{3} d x-\frac{1}{3} \\
& =0.3893 \ldots \text { units }^{3}
\end{aligned}
$$

ii) $f_{x x}=-2 \quad f_{y y}=2 y \quad f_{x y}=2$

For $(3.5,1)$:

$$
\begin{aligned}
D & =f_{x x}(3.5,1) \cdot f_{y y}(3.5,1)-\left[f_{x y}(3.5,1)\right]^{2} \\
& =-2 \cdot 2(1)-2^{2}=-8
\end{aligned}
$$

Since $D<0, \quad(3.5,1)$ is a saddle point.

For $(-0.5,-3)$:

$$
\begin{aligned}
D & =f_{x x}(-0.5,-3) \cdot f_{y y}(-0.5,-3)-\left[f_{x y}(-0.5,-3)\right]^{2} \\
& =-2 \cdot 2(-3)-2^{2}=8
\end{aligned}
$$

Since $D>0$, and $f_{x x}=-2<0$, the point $(-0,5,-3)$ is a local maximum with a value of 15.25 .

$$
\begin{aligned}
f(-0.5,-3)= & 5(-0.5)-8(-3)+2(-0.5)(-3) \\
& -(-0.5)^{2}+\frac{1}{3}(-3)^{2}
\end{aligned}
$$

Question 4:
First find the critical point.

$$
\begin{aligned}
& f_{x}=2 x+12=0 \longrightarrow x=-6 \\
& f_{y}=-2 y+6=0 \longrightarrow y=3
\end{aligned}
$$

Critical point is $(-6,3)$, however, $(-6)^{2}+(3)^{2} \geqslant 25$ so it is not inside the region.
Now we check the circle.

$$
\begin{aligned}
& x^{2}+y^{2}=25 \\
& y^{2}=25-x^{2} \\
& y=\sqrt{25-x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
f(x, y) & =x^{2}+12 x-y^{2}+6 y \\
& =x^{2}+12 x-\left(25-x^{2}\right)+6 \sqrt{25-x^{2}} \\
& =x^{2}+12 x-25+x^{2}+6 \sqrt{25-x^{2}} \\
& =2 x^{2}+12 x-25+6 \sqrt{25-x^{2}}
\end{aligned}
$$

Question 5:

$$
N_{1}=\langle 2,4,5\rangle \quad N_{2}=\langle b, a, b\rangle
$$

If $P_{1} \| P_{2}$, then $N_{1} \| N_{2}$.

$$
\begin{aligned}
& N_{1}=m N_{2} \\
& 2=6 m \longrightarrow m=1 / 3 \\
& 4=m a \longrightarrow 4=\frac{1}{3} a \longrightarrow a=12 \\
& 5=m b \longrightarrow 5=\frac{1}{3} b \longrightarrow b=15
\end{aligned}
$$

Choose a point on P_{1}, let's say $(1,1,0)$. If $P_{1} \| P_{2}$ then this point cannot lie on P_{2}. So:

$$
6(1)+12(1)+15(0) \neq c
$$

$$
c \neq 18
$$

Question 6:
$N_{1} \times N_{2}$ will be the directional vector D of the line L.

$$
\begin{gathered}
N_{1}=\langle 4,11,-5\rangle \quad N_{2}=\langle-2,-5,-1\rangle \\
N_{1} \times N_{2}=\left|\begin{array}{ccc}
4 & 11 & -5 \\
-2 & -5 & -1
\end{array}\right|=\langle-36,14,2\rangle=D
\end{gathered}
$$

We need a point that lies on P_{1} and P_{2}.

Let $z=0$.

$$
\begin{aligned}
& P_{1}: \begin{array}{l}
4 x+11 y=-3 \\
P_{2}: \quad(-2 x-5 y=3) \times 2 \\
\\
\quad y=3 \\
x=\frac{-3-11(3)}{4}=-9
\end{array}
\end{aligned}
$$

The Point is $(-9,3,0)$.

$$
\left.\begin{array}{rl}
L:\langle-36,14,2\rangle t+(-9,3,0) \\
L: x & =-36 t-9 \\
y & =14 t+3 \\
z & =2 t
\end{array}\right\} t \in \mathbb{R}
$$

Question 7:
i) We can rearrange the equation into this form:

$$
\begin{aligned}
& 4 x^{2}+9 y^{2}+z^{2}=25 \\
& \frac{4}{25} x^{2}+\frac{9}{25} y^{2}+\frac{1}{25} z^{2}=1 \\
& \frac{1}{25 / 4} x^{2}+\frac{1}{25 / 9} y^{2}+\frac{1}{25} z^{2}=1
\end{aligned}
$$

From this form we can see the equation resembles the general equation of an ellipsoid.

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

where $a=25 / 4, b=25 / 9, c=25$.
It is an ellipsoid because the coefficients of x^{2}, y^{2}, and z^{2} differ, so it won't be a perfect sphere.
ii) Neither, $x^{2}+y^{2}=9$ is a cylinder of infinite height and with radius 3 . This is because z is not bounded within a certain interval $a \leqslant z \leqslant b$ so the equation will result in infinite circles of radius 3 stacked on top of each other with every changing x and y.
iii) Local max means it is a critical point.
So $f_{x}(3,-5)=0$ and $f_{y}(3,-5)=0$.

$$
\begin{aligned}
& N=\langle 0,0,-1\rangle \\
& M=\overrightarrow{P, A}=\langle x-3, y+5,6-z\rangle \\
& N \cdot M=0
\end{aligned}
$$

Tangent Plane:

$$
-(b-z)=0 \longrightarrow z=6
$$

iv)
1)

$$
\begin{aligned}
f(1,4) & =3(1)(4)+(1)^{2}-\sqrt{4}+(1)^{3}(4) \\
a & =15
\end{aligned}
$$

2)

$$
\begin{aligned}
& \text { 2) } \\
& f_{x}=3 y+2 x+3 x^{2} y \\
& f_{y}=3 x-\frac{1}{2} y^{-\frac{1}{2}}+x^{3} \\
& f_{x}(1,4)=26 \quad f_{y}(1,4)=3.75 \\
& N=\left\langle f_{x}(1,4), f_{y}(1,4),-1\right\rangle \\
& N=\langle 26,3.75,-1\rangle \\
& M=\vec{P} A \\
& M=\langle x-1, y-4, z-15\rangle \\
& N \cdot M=0
\end{aligned}
$$

Tangent Plane:

$$
26(x-1)+3.75(y-4)-(z-15)=0
$$

3) Rearrange to make z the subject.

$$
\begin{aligned}
z=L(x, y) & =26(x-1)+3.75(y-4)+15 \\
L(0.8,4.01) & =26(0.8-1)+3.75(4.01-4)+15 \\
& =9.8375 \approx f(1,4)
\end{aligned}
$$

Question 8:

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{f x}{f y} \\
& f_{x}=5 y^{2} e^{5 x}+\sin (3 y)+2 x+y^{3} \\
& f y=2 y e^{5 x}+3 x \cos (3 y)+3 x y^{2} \\
& \frac{d y}{d x}=\frac{-\left(5 y^{2} e^{5 x}+\sin (3 y)+2 x+y^{3}\right)}{2 y e^{5 x}+3 x \cos (3 y)+3 x y^{2}}
\end{aligned}
$$

Question \# 1 $f(x, y, z)=\left\langle\frac{-1}{3} y, \frac{5}{4} x, z y\right\rangle$

$$
\begin{aligned}
& \text { 5: } x^{2}+y^{2}+z^{2}=9 \text {; Pink circle: } x^{2}+y^{2}+\theta^{2}=4 \\
& \left.\begin{array}{l}
x=3 \cos (t) \\
y=3 \sin (t)
\end{array}\right\} \quad 0 \leqslant t \leqslant 2 \pi \\
& \vec{R}(t)=\langle 3 \cos (t), 3 \sin (t), 0\rangle \\
& d R=\langle-3 \sin (t), 3 \cos (t), 0\rangle \alpha t \\
& \begin{array}{l}
\iint_{s} \cos 2 f \cdot d s=\int_{t=0}^{t=2 \pi}<-\frac{1}{3}(3 \sin t), \frac{5}{9}(3 \cos t), 0> \\
t=2 \pi
\end{array} \\
& =\int\left[3 \sin ^{2} t+5 \cos ^{2} t\right] d z \\
& z=0 \\
& =\int_{t=0}^{t=2 \pi}\left[3\left(\sin ^{2} t+\cos ^{2} t\right)+2 \cos ^{2} t\right] d t \\
& =\int_{t=0}^{t=2 \pi}\left[3+\frac{2}{2}(1+\cos 2 t)\right] d t \\
& =\int_{t=0}^{t=2 \pi}[4+\cos 2 t] d t \\
& =4 t+\left.\frac{1}{2} \sin 2 t\right|_{0} ^{2 \pi} \\
& =8 \pi \text { unit }
\end{aligned}
$$

Question \#2 $2(x, y, z)=\left\langle\frac{-1}{2} x z, y x, z y\right\rangle$

$$
\begin{aligned}
& S: z=x+2 y \\
& \text { Region } D:(2,0),(3,1),(1,1)
\end{aligned}
$$

$$
\begin{aligned}
\int_{c} F \cdot d r & =\rho_{s} \operatorname{curLF} \cdot d s \\
\varepsilon \operatorname{arl} F & =\left\langle F_{z y}-F_{y z}, f_{x z}-F_{z x}, f_{y x}-F_{x y}\right\rangle \\
& =\left\langle z-0,-\frac{1}{2} x-0, y\right\rangle \\
& =\left\langle z,-\frac{1}{2} x, y\right\rangle
\end{aligned}
$$

$$
2-x-2 y=0 \Longrightarrow g(x, y, z)=z-x-2 y
$$

$$
d s=\langle-9 x,-9 y, 1\rangle
$$

$$
=\langle 1,2,1\rangle
$$

$$
\iint_{s} c u r l f \cdot d s
$$

Using region D

$$
\begin{aligned}
& L_{1}: m=\frac{0-1}{2-1}=-1 \\
& \text { L2: } m=\frac{1-0}{3-2}=1 \\
& y-0=-1(x-2) \\
& y-1=1(x-3) \\
& y=-x+2 \\
& y=x-2 \Rightarrow x=y+2 \\
& \Rightarrow x=-y+2 \\
& \Rightarrow \int_{y_{0} 0}^{y=1} \int_{y=-y+2}^{x y+2}\left\langle z, \frac{-1}{2} x, y\right\rangle \cdot\langle 1,2,1\rangle d x d y \\
& \Rightarrow y_{y=0}^{y=1} \int_{x=-y+2}^{x=y+2}(z-x+y) d x d y-y \\
& =\int_{y=0}^{y=1} \int_{x=-y+2}^{x=y+2}(x+2 y-x+y) d x d y \\
& =\int_{y=0}^{y=1} \int_{x=-y+2}^{x=y+2} 3 y d x d y=\int_{y=0}^{y=} f_{3 y} 3 y[y+2-(-y+2)] d y \\
& =\int_{y=0}^{t=1} 3 y(2 y) d y=\left.\frac{6 y^{3}}{3}\right|_{0} ^{1}=2
\end{aligned}
$$

Question $\# 3 \quad \alpha(x, y)=\sqrt{1+x}+y$

$$
\begin{aligned}
& z=\frac{2}{3} x^{3 / 2}+\frac{2}{3} y^{3 / 2} \\
& D: \quad x^{2}+y^{2} \leqslant 4 \\
& x^{2}+y^{2} \geqslant 1 \\
& m=\iint_{D} \alpha(x, y) d s \\
& d s=\sqrt{1+(z X)^{2}+(z Y)^{2}} d A \\
& \alpha A=r d r d \theta \quad 1 \leqslant r \leq 2 \\
& x=r \cos \theta \\
& y=r \sin \theta \\
& 0 \leqslant \theta \leqslant \pi / 2 \\
& 2 x=\frac{3}{2}\left(\frac{2}{3}\right) x^{1 / 2}, \quad z_{y}=\frac{3}{2}\left(\frac{2}{3}\right) y^{1 / 2} \\
& =x^{1 / 2}=y^{1 / 2} \\
& \therefore \quad \alpha s=\sqrt{1+x+4} \quad d A \\
& m=\rho \rho[\sqrt{1+\varphi+y}][\sqrt{1+x+y}] d A \\
& =\iint_{D}(1+x+y) d A \\
& R=r \cos \theta \\
& y=r \sin \theta \\
& =\int_{\theta=0}^{\theta=\pi / 2} \int_{r=1}^{r=2}(1+r \cos \theta+r \sin \theta) r d r d \theta \\
& =\int_{\theta=0}^{\theta=\pi / 2} \int_{r=1}^{r=2}\left[r+r^{2}(\cos \theta+\sin \theta)\right] d r d \theta
\end{aligned}
$$

$\Longrightarrow)$
continuation. question $\# 3$

$$
\theta=\int_{0}^{\theta}\left[\frac{1}{2} \int^{2}+\frac{1}{3} \cdot 3(\cos \theta+\sin \theta]_{0}^{1-2} d \theta\right.
$$

$$
=\int_{0}^{\pi / 2}\left[\frac{1}{2}\left(2^{2}-1^{2}\right)+\frac{1}{3}\left(2^{3}-1^{3}\right)[\cos \theta+\sin \theta)\right] d \theta
$$

$$
=0=\pi / \frac{3}{2}+\frac{7}{3}(\cos \theta+\sin \theta) \quad 0 \quad \theta
$$

$=\frac{3}{2} \theta+\left.\frac{7}{3}(\sin \theta-\cos \theta)\right|_{0} ^{\pi / 2}$

$$
=\frac{3}{2} \pi / 2+\frac{2}{3}(2)
$$

$$
=\frac{3 \pi}{4}+\frac{14}{3}
$$

Question \# 4

$$
\begin{aligned}
& \text { check } f_{x y}=\sqrt{P(y-3)+1}+(y-3)\left(\frac{1}{2}\right)(x(y-3)+1)^{-1 / 2} x^{p} \\
& =\sqrt{x(y-3)}+1+\frac{(y-3) x}{2 \sqrt{x(y-3)+1}} \\
& =\frac{x(y-3)+1+(y-3) x}{2 \sqrt{x(y-3)+1}}=\frac{2 x(y-3)+1}{2 \sqrt{x(y-3)+1}} \\
& f_{y}=\sqrt{x(y-3)+1}+\frac{x(y-3)}{2 \sqrt{x(y-3)+1}} \\
& =\frac{x(y-3)+1+x(y-3)}{2 \sqrt{x(y-3)+1}}=\frac{2 x(y-3)+1}{2 \sqrt{x(y-3)+1}}
\end{aligned}
$$

\therefore conservative $\left(f_{x y}=f_{y x}\right)$
$k(x, y)$

$$
\begin{aligned}
& k_{x}=(y-3) \sqrt{x(y-3)+1} \\
& \\
& =\int \sqrt{u} d u=\frac{2 y}{x}=\frac{2 u^{3 / 2}}{3}=\frac{\text { Let } u}{}=x(y-3)+1 \\
& =\int x-3=\frac{2}{3}[x(y-3)+1]^{3 / 2}
\end{aligned}
$$

continuation Question $\# 4$

$$
\begin{aligned}
& \int_{f y} d y=\int_{x} \sqrt{x(y-3)+1} d y \quad \text { Let } u=x(y-3)+1 \\
& \Rightarrow f u=x d y \\
& \Rightarrow f \sqrt{u} d u=\frac{2 u^{3 / 2}}{3}=\frac{2}{3}[x(y-3)+1]^{3 / 2} \\
& k(x, y)=\frac{2}{3}[x(y-3)+1]^{3 / 2} \\
& \int_{c} \vec{f} \cdot d r=k\left[0,3+e^{-3}\right)-k(3, y) \\
&=\frac{2}{3}(1)^{3 / 2}-\frac{2}{3}[3(4-3)+1]^{3 / 2} \\
&=\frac{2}{3}-\frac{2}{3}(4)^{3 / 2} \\
&=\frac{-14}{3}
\end{aligned}
$$

Question \#5 ?

Resion D

$$
\begin{aligned}
& 0 \leqslant x \leqslant \sqrt{y} \\
& 1 \leqslant y \leqslant 4
\end{aligned}
$$

$$
\int_{c} f \cdot \alpha r=\int_{D} \rho\left(f_{y x}-f_{x y}\right) \alpha_{A}
$$

ccw (tve direction)

$$
\begin{aligned}
& f_{y x}=\frac{3}{2} \sqrt{y^{3 / 2}+1}, \quad f_{x y}=0 \\
& \int_{c} f=d r=\iint_{D} \frac{3}{2} \sqrt{y^{3 / 2}+1} d A=\int_{y=1}^{y=4} \int_{p=0}^{p=\sqrt{y}} \frac{3}{2} \sqrt{y^{3 / 2}+1} d x d y \\
& \left.=\left.\int_{y=1}^{y=4}\left[\frac{3}{2} \sqrt{y^{3 / 2}}+1 \quad x\right]\right|_{0} ^{\sqrt{y}}\right] d y=\int_{y=1}^{y=4} \frac{3}{2} \sqrt{y} \sqrt{y^{3 / 2}+1} d y \\
& \text { Let } u=y^{3 / 2}+1 \\
& \begin{array}{l}
y=1 i \\
u
\end{array}=\text { ? } \\
& d u=\frac{3}{2} y^{1 / 2} d y \\
& =\int_{u=2}^{u=9} \sqrt{u} d u=\frac{2}{3} u^{3 / 2} /_{2}^{9} \\
& =16.11
\end{aligned}
$$

Question \#6

$$
\begin{aligned}
& \text { i) curlf }=\left\langle f_{z y}-f_{y z}, f_{x} z-f_{z x}, f_{y x}-f_{x y}\right\rangle \\
& =\langle 2 z-2 z, 0-0,0-0\rangle=\langle 0,0,0\rangle
\end{aligned}
$$

\therefore yes it is conservative

$$
\begin{aligned}
& \text { ii) } k(x, y, z) \\
& f\left(x^{2}+1\right) d x=\frac{1}{3} x^{3}+p \\
& f\left(z^{2}+1\right) d y=\left(z^{2}+1\right) y \\
& f(2 z y+1) d z=z^{2} y+z \\
& k(x, y, z)=\frac{1}{3} x^{3}+x+z^{2} y+y+z \\
& =\frac{1}{3} x^{3}+z^{2} y+x+y+z
\end{aligned}
$$

checki

$$
\begin{aligned}
k_{R} & =y^{2}+1 \\
k_{y} & =z^{2}+1 \\
k_{z} & =2 z^{y}+1 \\
\int_{c} F \cdot \alpha R & =k(4,3,2)-k(1,1,1) \\
& =\left[\frac{1}{3}(4)^{3}+(2)^{2}(3)+2+3+1\right]-\left[\frac{1}{3}(1)^{3}+(1)^{2}(1)+1+1+1\right]
\end{aligned}
$$

$$
=\left[\frac{64}{3}+21\right]-\left[\frac{1}{3}+4\right]=38
$$

```
\(=\)
\(\pm\)
1
45
HTH,
Tane
```



```
    \(\nabla_{2}(12)=\left\langle\frac{1}{3}=\frac{1}{3}\right\rangle\)
\(=-\frac{1}{5}\left(<\frac{1}{3}, \frac{2}{3} \gg<3,4>\right)\)
\(=\frac{1}{3}\left(\frac{5}{5} \times 3+\frac{1}{3} \times 4\right)=\frac{75}{18}\)
(ii) Max fores at (Cunge at (in
```



```
    \(\nabla f(x)=0+5 \cdot+=\)
```



```
    - 宫
```



```
    Quasteren 2 :
```



```
\(\therefore=\frac{2 x}{2}\)
5
```



```
5
quanton 2 :
```



```
    \(=2 \times 2-(1)^{2}=3>0\) mos \(p_{x}=0+\left(x_{t}\right)\)
```



```
                \(\left.\nabla \nabla_{f(x, y)}\right)=\langle 1,1,1,2 x\)
                \(f_{f(x, z)}=\left\langle y=, x_{n}=x_{4}\right.\)
```



```
            \(4 x+x^{2}+z^{2}=25\)
\(y+y+\frac{1}{y}=25\)
            \(y+y+\frac{4}{z}=25\)
\(\frac{5}{2} y=25\)
            \(\frac{5}{5} y^{\frac{2}{2}}=25\)
\(4-10\)
            \(\frac{x=y}{x=10} \quad \frac{2}{\frac{x}{2}}=\sqrt{x}\)
            to \(\quad \cdots+\cdots\) and ar \(x_{y, 2}\)
Quention \(6=\)
(1) \(z>0\) " \(z^{2}+z e^{(x-y)}-6=0\)
    \(x(t, s)=3 t^{2}+3\)
\(y(t(s)=2 t+3 s\)
```



```
\begin{tabular}{c}
\(4=25\) \\
\(4=3)\) \\
\hline\(=3\)
\end{tabular}
```



```
    为
    \(\int\) Smo tho do
        \(\frac{2+20-450}{5}\)
    \(=10\)
    Quatson 78
```



```
            \(=-\infty, 0,0 \infty\)
```



```
    \(\int f_{z} d z=\int-z e^{(x+2)}+x+3 x=e^{x+z}+x z=3 z\)
\(k(y, x)=e^{z=-1}+x+x+y x+y^{2}+y+3 z\)
        \(\begin{aligned} \int_{C} F d x & =k(5,8,3)-k(0) 1,9) \\ & =154-3=[15]\end{aligned}\)
```



```
\(f_{x y}=0,0\)
\(f_{x}=e^{\text {ve }}+6\)
\(6 x=e^{3+6}\)
```


${ }_{0.21}$ Quiz I

Quiz I , MTH 203, Fall 2021

Ayman Badawi

QUESTION 1. Convince me that $L_{1}: x=3 t+1, y=t-2, z=-4 t+2(t \in R)$ is perpendicular to $L_{2}: x=$ $2 w, y=2 w-5, z=2 w-6(w \in R)$.

QUESTION 2. Is the line $L_{1}: x=3 t+1, y=t-2, z=-4 t+2(t \in R)$ parallel to $L_{2}: x=6 w-5, y=$ $2 w-4, z=-8 w+11(w \in R)$? EXPLAIN WHY YES or WHY NO.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

${ }_{0.22}$ Quiz II

Quiz II , MTH 203, Fall 2021
 Ayman Badawi

QUESTION 1. Does the line $L: x=-t+2, y=2 t+6, z=3 t-2(t \in R)$ intersect the plane $P: x+y+2 z=25$. If yes, then find the point of intersection.

QUESTION 2. Can we draw the vector $v=<2,-4,-3>$ inside the plane $P: x+y-2 z=12$? explain

QUESTION 3. Does the plane $P_{1}: x+2 y+z=5$ intersect the plane $P_{2}:-x-y+3 z=-2$? If yes, the find the parametric equations of line of intersection.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

0.23 Quiz III

Quiz III , MTH 203, Fall 2021

Ayman Badawi

QUESTION 1. Find all critical points of the function $f(x, y)=y x^{2}-2 x^{2}-y^{2}$. Then classify each critical point as local Max/Min or Saddle or neither.

Faculty information

Quiz IV, MTH 203 , Fall 2021

Ayman Badawi

QUESTION 1. Let $f(x, y)=y e^{(x-4)}+x \sqrt{y}+2 x$.
(i) Let $a=f(4,1)$. Find a
(ii) Find f_{x} and f_{y}.
(iii) Let P be the tangent plane to $f(x, y)$ at the point $(4,1, a)$. Let N be a vector that is perpendicular to P. Find N.
(iv) Find the equation of P, where P is as in (iii).
(v) Use the concept of the tangent plane to approximate $f(4.2,0.8)$

QUESTION 2. A solid object has a a triangular base that is bounded by $y=x$ and $y=-x$ (see PICTURE). Note that $-2 \leq x \leq 2$ and $0 \leq y \leq 2$. The height is determined by the function $f(x, y)=e^{\sqrt{4-y^{2}}}$. Find the volume of such object.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Quiz V , MTH 203, Fall 2021

Ayman Badawi

SHOW THE WORK, SUBMIT by 2:35pm

QUESTION 1. See the below picture. A force $F(x, y)=\langle-y, x\rangle$ is acting on a particle in order to move it from the point A to the point B along the ellipse $x^{2}+4 y^{2}=16$. Find the work done by the force $F(x, y)$. [Hint: you do not need to find $A, B]$.

QUESTION 2. The height of a curtain is determine by $f(x, y)=e^{2 x}+5 y^{2}$ defined over the curve $y=e^{x}, 0 \leq x \leq$ $\ln (5)$. Find the surface area of the curtain.

QUESTION 3. Evaluate the integral $\int_{C}(1+2 y) d y$, where the curve C is $y=e^{x^{2}}, 0 \leq x \leq 1$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Quiz VI, MTH 203, Fall 2021

Ayman Badawi

SHOW THE WORK, SUBMIT by 2:35pm

QUESTION 1. See the below picture. A force $F(x, y)=<y e^{y x}-2 x, x e^{y x}+4 y^{3}>$ is acting on a particle in order to move it from the point $A=(-2,0)$ to the point $e=(0,-4)$ along the curve C that consists of C_{1} part of the circle $x^{2}+y^{2}=4, C_{2}$ the line segment between B and c, C_{3} the line segment between c and d, and C_{4} the line segment between d and e . Find the work done by the force $F(x, y)$.

QUESTION 2. See the below picture. A force $F(x, y)=<-2 y, \frac{2}{3} x \sqrt{y^{2}+9}>$ is acting on a particle in order to move it from the point $A=(0.0)$ then back to the same point A along the curve C that consists of C_{1} part of the the line $y=0.5 x$ between A and B, C_{2} part of the line $y=4$ between B and C, and C_{3} part of the y-axis between C and A. Use Green's Theorem to find the work done by the force $F(x, y)$. [Hint: Is dxdy or dydx easier?]

QUESTION 3. Find the surface area of the part of $f(x, y)=\frac{x^{2}}{2 \sqrt{2}}+\frac{y^{2}}{2 \sqrt{2}}$ defined over the region in the first quadrant of the xy-plane bounded by $x^{2}+y^{2} \leq 4$ and $x^{2}+y^{2} \geq 1$, see picture.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

0.3 Exams

(

Exam I , MTH 203 , Fall 2021

Ayman Badawi

(IMPORTANT: STOP WORKING at 7:40 pm, Go to assessment, you will find a folder SUBMIT EXAM ONE, Submit your solution as a PDF file, Max by 7:55 pm)

Score $=$ \qquad
QUESTION 1. (6 points) Given $Z=f(x, y)=\frac{36 y}{9 x^{4}+1}$ is defined over the $\operatorname{arc} C: y=x^{3}$, where $0 \leq x \leq 1$. Find the surface area of the curtain that is determined by $f(x, y)$ and the ARC C. [Hint: Note that $Z=f(x, y) \geq 0$]. Show all steps that you used in evaluating the integral. You may use a calculator at the end (i.e., last step ONLY, in order to come up with the answer)

QUESTION 2. (6 points, SHOW THE WORK) Given $Z=f(x, y)=x \sqrt{y+1}$ is defined over the region bounded by the positive x-axis, $y=x$, and $0 \leq x \leq 1$. Find the volume of such object. [Hint: Note that $Z=f(x, y) \geq 0$]. Show all steps that you used in evaluating the integral. You may use a calculator at the end (i.e., last step ONLY, in order to come up with the answer)

QUESTION 3. (10 points, SHOW THE WORK) Given $Z=f(x, y)=5 x-8 y+2 x y-x^{2}+\frac{1}{3} y^{3}$
(i) Find all critical points of $f(x, y)$.
(ii) Classify each critical point as local max., local min., saddle point, or neither.

QUESTION 4. (8 points, SHOW THE WORK) Find the absolute maximum and the absolute minimum of $f(x, y)=$ $x^{2}+12 x-y^{2}+6$ over the bounded region $x^{2}+y^{2} \leq 25$. [Hint: the region consists of all points inside the circle $x^{2}+y^{2}=25$ including the points on the circle $\left.x^{2}+y^{2}=25\right]$.

QUESTION 5. (6 points, SHOW THE WORK) Given $P_{1}: 2 x+4 y+5 z=6$ and $P_{2}: 6 x+a y+b z=c$ such that P_{1} is parallel to P_{2}. Find all possible values of a, b, c.

QUESTION 6. (8 points, SHOW THE WORK) The plane $4 x+11 y-5 z=-3$ intersects the plane $-2 x-5 y-z=3$ in a line L. Find a parametric equations of L.

QUESTION 7. (i) (2 points) Is $4 x^{2}+9 y^{2}+z^{2}=25$ a sphere or ellipsoid or a cone? Explain briefly
(ii) ($\mathbf{2}$ points) Is $x^{2}+y^{2}=9$ a cylinder of finite height? or a sphere of infinite radius? or neither? explain briefly
(iii) (2 points) Given $(3,-5,6)$ is a local maximal point of $f(x, y)$. Find the equation of the tangent plane at $(3,-5,6)$ [Hint: pause, think! trust me it is not difficult]
(iv) Let $f(x, y)=3 x y+x^{2}-\sqrt{y}+x^{3} y$. Let $a=f(1,4)$.
(1) Find a. (1 point)
(2) (5 points) Find the equation of the tangent plane to $f(x, y)$ at $(1,4, a)$.
(3)(2 points) Use the concept of the tangent plane to approximate $f(0.8,4.01)$

QUESTION 8. (4 points, SHOW THE WORK) Use the concept of partial order to find $d y / d x$, where $y^{2} e^{5 x}+$ $x \sin (3 y)+x^{2}+x y^{3}+10=0$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
(1)

Exam II , MTH 203, Fall 2021

Ayman Badawi

(IMPORTANT: STOP WORKING at $10: 40 \mathrm{pm}$, Go to assessment, you will find a folder SUBMIT EXAM TWO, Submit your solution as a PDF file,by $10: 55 \mathrm{pm}$, as at most. I will not receive solutions by EMAIL)

Score = \qquad
QUESTION 1. (6 points, SHOW THE WORK) Given $F(x, y, z)=<\frac{-1}{3} y, \frac{5}{9} x, z y>$ defined over the upper-half of the sphere $S: x^{2}+y^{2}+z^{2}=9$ (i.e., $0 \leq z \leq 3$). Assume that S is oriented upward. Use Stoke's Theorem to evaluate $\iint_{S} C \operatorname{url}(F) \cdot d S$. [Hint: Find the (familiar) curve C that is surrounding the upper half sphere!]

QUESTION 2. (6 points, SHOW THE WORK) Given $F(x, y, z)=<\frac{-1}{2} x z, y x, z y>$ defined over the portion of the plane $S: z=x+2 y$ oriented upward that is bounded by the triangular curve C positively oriented (i.e., ccw) with vertices $(2,0,2),(3,1,5),(1,1,3)$. Use Stoke's Theorem to find $\int_{C} F \cdot d r$. [hint: in order to find the region D in the xy-plane, project the vertices of the triangle over the xy-plane (i.e., let $z=0$), then stare at the region D inside the triangle]

QUESTION 3. (6 points, SHOW THE WORK) The density function of an object is given by $d(x, y)=\sqrt{1+x+y}$. The surface of th object has the shape that is determined by $z=\frac{2}{3} x^{\frac{3}{2}}+\frac{2}{3} y^{\frac{3}{2}}$ defined over the region D (see picture below) in the first quadrant of the xy-plane where $x^{2}+y^{2} \leq 4$ and $x^{2}+y^{2} \geq 1$. Find the mass of such object. [Hint: Note that the mass is $\iint_{D} d(x, y) d S$]

QUESTION 4. (6 points, SHOW THE WORK) See the below picture. A force

$$
F(x, y)=<(y-3) \sqrt{x(y-3)+1}, x \sqrt{x(y-3)+1}>
$$

is acting on a particle in order to move it from the point $A=(3,4)$ to the point $B=\left(0,3+e^{-3}\right)$ along the curve $C: y=3+e^{(x-3)}$ (clockwise). Find the work done by the force $F(x, y)$.

QUESTION 5. (6 points, SHOW THE WORK) See the below picture. A force $F(x, y)=<x^{2}+x+1, \frac{3}{2} x \sqrt{y^{\frac{3}{2}}+1}>$ is acting on a particle in order to move it from the point $A=(0,1)$ then back to the point A along the curve C (counter clockwise) that consists of C_{1} : part of the line $y=1$ from A to $B=(1,1), C_{2}$: part of the curve $y=x^{2}$ from B to $C=(2,4), C_{3}$: part of $y=4$ from C to $D=(0,4)$, and C_{4} : part of the y-axis from D to A. Use Green's Theorem to Find the work done by the force $F(x, y)$.

QUESTION 6. (6 points, SHOW THE WORK) Let $F=<x^{2}+1, z^{2}+1,2 z y+1>$
(i) Find $\operatorname{Curl}(\mathrm{F})$. Is F conservative?
(ii) Assume that the given F is a force that is acting on a particle in order to move it from $A=(1,1,1)$ to the point $B=(4,3,2)$ along the curve $r(t)=<t, 2 \sqrt{t}-1, \sqrt{t}>$. Find the work done by F. See the picture of $r(t)$ below

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Final Exam , MTH 203 , Fall 2021

Ayman Badawi

(IMPORTANT: STOP WORKING at 4:00 pm, Go to assessment, you will find a folder SUBMIT Final Exam, Submit your solution as a PDF file,by $04: 12$ pm, as at most. I will not receive solutions by EMAIL)

Score $=$ \qquad
QUESTION 1. (6 points, SHOW THE WORK) Given $F(x, y, z)=<y^{2} x, x^{2} y, \frac{1}{3} z^{3}>$ defined over the solid upperhalf of the sphere $S: x^{2}+y^{2}+z^{2}=4$ (i.e., $0 \leq z \leq 2$). Assume that S is oriented upward and closed from the bottom by the plane $z=0$. Use the Divergence's Theorem to find the flux through the given solid upper half sphere (i.e., $\iint_{S} F(x, y, z) \cdot d S$).

QUESTION 2. (6 points, SHOW THE WORK)

(i) Show that $\operatorname{Lim}_{(x, y) \rightarrow(5,2)} \frac{2 e^{(2 x-5 y)}-y}{2 x-5 y}$ does not exist.
(ii) Given $\operatorname{Lim}_{(x, y) \rightarrow(4,3)}$

$$
\frac{\sqrt[3]{3 y-2 x}-1}{2 x-3 y+1} \text { exists. What is it? }
$$

QUESTION 3. (6 points, SHOW THE WORK) The density function of an object is given by $d(x, y)=x+y$. The surface of th object is determined by $z=8-2 x^{2}-2 y^{2}$ above the xy-plane (see picture). Find the mass of such object. [Hint: Note that the mass is $\iint_{D} d(x, y) d S$]

QUESTION 4. (6 points, SHOW THE WORK) See the below picture. A force $F(x, y)=<e^{\left(x^{2}+1\right)}, x e^{\left(y^{3}+3 y\right)}>$ is acting on a particle in order to move it from the point $A=(0,0)$ then back to the point A along the curve C (counter clockwise) that consists of C_{1} : part of the x-axis from A to $B=(1,0), C_{2}$: part of the curve $y=\sqrt{x-1}$ from B to $C=(5,2), C_{3}$: part of $y=2$ from C to $D=(0,2)$, and C_{4} : part of the y-axis from D to A. Use Green's Theorem to Find the work done by the force $F(x, y)$.

QUESTION 5. (6 points, SHOW THE WORK) Given $f(x, y)=\sqrt{x^{2}+y^{2}+4}$.
(i) Find $D_{u}(1,2)$, where u is the unit vector in the direction of $\langle 3,4\rangle$.
(ii) Find the maximum rate of change of $f(x, y)$ at $(1,2)$ and the direction in which the maximum rate of change occurs.

QUESTION 6. (6 points, SHOW THE WORK) (1) Given $z>0$ and $z^{2}+z e^{(x-y)}-6=0, x(t, s)=3 t^{2}+2 s$ and $y(t, s)=2 t+3 s$. Find $\partial z / \partial t$ when $t=s=1$.
(2) Given the curve $r(t)=<\sqrt{2 t}, t^{2}+t, \sin (\pi t)>$. Find the equation of the tangent line to the curve $r(t)$ at $(2,6,0)$.

QUESTION 7. (6 points, SHOW THE WORK) Let $F=<e^{(x-2 z)}+y+z+1,2 y+x+1,-2 e^{(x-2 z)}+x+3>$
(i) Find $\operatorname{Curl}(\mathrm{F})$. Is F conservative?
(ii) Assume that the given F is a force that is acting on a particle in order to move it from $A=(0,1,0)$ to the point $D=(6,8,3)$ along the curve C (see picture) that consists of C_{1} : part of $r(t)=<3 t, t^{2}+1, \sqrt{t}>$ from A to $B=(3,2,1), C_{2}$: part of the curve $r(t)=<3+t, 2 t+2, t^{2}+1>$ from B to $C=(4,4,2), C_{3}$: part of $r(t)=<2 t^{2}+4,4 t+4, t^{2}+2>$ from C to $D=(6,8,3)$. Find the work done by the force $F(x, y)$ (i.e., find $\left.\int_{C} F(x, y, z) \cdot d r\right)$.

QUESTION 8. (8 points, SHOW THE WORK)

(i) Let $f(x, y)=x^{2}+y^{2}+x y-3 x-3 y+20$. Find all critical points of $f(x, y)$ and classify each point as local min, local max, or saddle point
(ii) Find three positive real numbers x, y, z (i.e., $x, y, z>0$) such that $x y z$ is maximum and $x+y+z^{2}=25$. [hint: use Lagrange]

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Faculty information

Ayman Badawi, American University of Sharjah, UAE. E-mail: abadawi@aus.edu

[^0]: 1. Homework Hints available at stewartcalculus.com
[^1]: To help with the problem let's label each of the curves as follows,

[^2]: To help with the problem let's label each of the curves as follows,

